Country Scenario - Pakistan

SAARC Perspective Workshop on the Past, Present and Future of High Voltage DC (HVDC) Power Transmission
30 September – 1 October 2015, Lahore, Pakistan

Presented by:
Muhammad Waseem Younas (mywaseem.100@gmail.com)
Manager, Planning (Power), NTDCL
Contents

1. Overview of Overall Power System in Pakistan
2. NTDCL and K-Electric Power Systems
3. Existing Generation Capacity of NTDCL
4. Load Demand and Historical Demand Supply Position
5. Existing Generation Capacity and Load Demand of K-Electric
7. Summary of Planned Generation & Demand-Supply Position in Future
8. Existing Transmission Network of NTDCL
9. Planned Transmission Network of NTDCL
10. Planned and Under Consideration HVDC Projects in Pakistan
Overview of Power System of Pakistan
• Two electric power utility systems operating in Pakistan since 1958:
 - Water and Power Development Authority (WAPDA)
 - Karachi Electric Supply Corporation (KESC)

• Pakistan Power Sector Strategic Plan was approved in 1992 for restructuring the power sector and introducing reforms. In the late 90’s, the Power wing of WAPDA was unbundled into:
 - 1 National Transmission and Despatch Company (NTDC);
 - 4 Generation Companies (GENCOs); and
 - 10 Distribution Companies (DISCOs)
Two Power Grid Systems Currently in Operation

1. **National Transmission and Despatch Company Limited (NTDCL)**
 - Public limited Company and incorporated in 1998.
 - National Grid Company. Operates all over the country except Karachi.
 - Responsible for planning, design, construction, maintenance and operation of 500kV and 220kV network.
 - Purchases power from Hydro Power Stations, GENCOs, IPPs etc. and Sells power to Distribution Companies (DISCOs) through its network.
 - Exports power to K-Electric.
 - Deals with Cross-border Electricity Trade.

2. **K-Electric**
 (formerly known as Karachi Electric Supply Company (KESC))
 - Private Limited Company. Operating since 1913.
 - Generates, transmits and distributes power in Karachi city & some surrounding areas.
 - Purchases power from IPPs located in its territory.
 - Imports power from NTDCL.
Existing Generation Capacity of NTDCL System
(as of August 2015)

1. **Hydro**
 - **WAPDA**: 6902 MW
 - **IPPs**: 195 MW
 - **Sub-Total**: 7097 MW (31.1%)

2. **Thermal**
 - **GENCOs**: 6001 MW
 - **IPPs**: 8866 MW
 - **Sub-Total**: 14867 MW (64.9%)

3. **Nuclear**
 - 665 MW (2.9%)

4. **Wind**
 - 256 MW (1.1%)

TOTAL: 22,885 MW
<table>
<thead>
<tr>
<th>Years</th>
<th>Available Capability (MW)</th>
<th>Computed Peak Demand (MW)</th>
<th>Surplus/Shortfall (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-04</td>
<td>11834</td>
<td>11598</td>
<td>236</td>
</tr>
<tr>
<td>2004-05</td>
<td>12792</td>
<td>12595</td>
<td>197</td>
</tr>
<tr>
<td>2005-06</td>
<td>12600</td>
<td>13847</td>
<td>-1247</td>
</tr>
<tr>
<td>2006-07</td>
<td>13292</td>
<td>15838</td>
<td>-2546</td>
</tr>
<tr>
<td>2007-08</td>
<td>12442</td>
<td>17398</td>
<td>-4956</td>
</tr>
<tr>
<td>2008-09</td>
<td>13637</td>
<td>17852</td>
<td>-4215</td>
</tr>
<tr>
<td>2009-10</td>
<td>13445</td>
<td>18467</td>
<td>-5022</td>
</tr>
<tr>
<td>2010-11</td>
<td>13193</td>
<td>18521</td>
<td>-5328</td>
</tr>
<tr>
<td>2011-12</td>
<td>12320</td>
<td>18940</td>
<td>-6620</td>
</tr>
<tr>
<td>2012-13</td>
<td>13577</td>
<td>18827</td>
<td>-5250</td>
</tr>
<tr>
<td>2013-14</td>
<td>14584</td>
<td>20576</td>
<td>-5992</td>
</tr>
<tr>
<td>2014-15</td>
<td>15489</td>
<td>20966</td>
<td>-5477</td>
</tr>
</tbody>
</table>
Existing Generation Capacity & Load Demand of K-Electric
as of June 2014

• Generation Capacity
 1. Thermal
 • Own Plants 2422 MW
 • IPPs & Others 290 MW
 Sub-total 2712 MW (95.1%)
 2. Nuclear
 • Nuclear 137 MW (4.9%)
 Total Installed Capacity 2849 MW

• Load Demand: 2929 MW
• K-Electric imports 650 MW from NTDCL
Government Priorities for Future Generation to Improve Power Supply Position

- Addition of hydropower generation in North.
- Addition of imported-coal based generation in South near coast.
- Development of Indigenous coal based power generation in South at Thar.
- Addition of imported coal based generation at/near mid-country load centers.
- Addition of Renewable Energy:
 - Wind Power Projects near coast
 - Solar power projects near load centers
 - Cogeneration power projects near load centers
- Import of Power through Cross-border Interconnections.
Summary of Generation Additions up to Year 2019-20

<table>
<thead>
<tr>
<th>Sponsors</th>
<th>Generation Addition (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAPDA Hydel</td>
<td>4023</td>
</tr>
<tr>
<td>IPP Hydel</td>
<td>247</td>
</tr>
<tr>
<td>Sub-total Hydel</td>
<td>4270</td>
</tr>
<tr>
<td>GENCOs</td>
<td>1320</td>
</tr>
<tr>
<td>IPP Thermal</td>
<td>12713</td>
</tr>
<tr>
<td>Sub-total Thermal</td>
<td>14033</td>
</tr>
<tr>
<td>Nuclear</td>
<td>680</td>
</tr>
<tr>
<td>Wind</td>
<td>1500</td>
</tr>
<tr>
<td>Solar</td>
<td>900</td>
</tr>
<tr>
<td>CASA (Import)</td>
<td>1000</td>
</tr>
<tr>
<td>Total</td>
<td>22383</td>
</tr>
<tr>
<td>Years</td>
<td>Available Capability</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2015-16</td>
<td>17820</td>
</tr>
<tr>
<td>2016-17</td>
<td>21285</td>
</tr>
<tr>
<td>2017-18</td>
<td>27932</td>
</tr>
<tr>
<td>2018-19</td>
<td>29039</td>
</tr>
<tr>
<td>2019-20</td>
<td>31756</td>
</tr>
</tbody>
</table>
The voltage levels and technologies used in the existing power grid and proposed for the future grid expansion are as under:

AC Voltage:
- 500 kV & 220 kV: Used in the existing and future expansion of NTDCL system. 220 kV is used in the existing and future expansion of K-Electric system.
- 132 kV & 66 kV: Used in existing system and future expansion of Distribution Companies and K-Electric. 66 kV system will be gradually upgraded to 132 kV.

HVDC Voltage for Future Grid Expansion:
- ±600 kV: Proposed for South to mid-country bulk power transfer.
- ±500 kV: Proposed for Cross-border Interconnections.
Existing Transmission Networks of NTDCL and K-Electric
Salient Features of NTDCL Network

- North to South longitudinal network.
- Hydro generation in North and major thermal generation in South & in lower middle part of network.
- Large load centers are remote from major generation sources.
- Seasonal variation in generation dispatch and in power flows.
Planned Transmission Network of NTDCL (Year 2019-20)
NTDCL TRANSMISSION SYSTEM - EXISTING AND FUTURE PLAN

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Description</th>
<th>Existing as of 2015</th>
<th>Additions up to 2019-20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quantity</td>
<td>Capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(No.)</td>
<td>(MVA)</td>
</tr>
<tr>
<td>1</td>
<td>No. of 500 kV Grid Stations</td>
<td>18</td>
<td>18,624</td>
</tr>
<tr>
<td>2</td>
<td>No. of 220 kV Grid Stations</td>
<td>48</td>
<td>24,063</td>
</tr>
<tr>
<td>3</td>
<td>Length of 500 kV Transmission lines</td>
<td>5,197 km</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Length of 220 kV Transmission lines</td>
<td>9,184 km</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>± 500kV HVDC Convertor Station at Peshawar New</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>±500 kV HVDC Bipole Transmission line from Pak-Afghan Border to Peshawar New</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>± 600 kV HVDC Bipole Converters (Matiari & Lahore)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>±600kV HVDC Bipole Transmission line (Matiari - Lahore)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>± 600 kV HVDC Bipole Converters (Port Qasim & Faisalabad West)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>±600kV HVDC Bipole Transmission line (Port Qasim – Faisalabad West)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: In the existing system, the IPPs, Privately Owned, Hydel & GENCO owned generating substations have also been included.
Planned and Under Consideration HVDC Projects

Domestic Projects
1. ±600kV HVDC Bipole Transmission line (Matiari - Lahore)
2. ±600kV HVDC Bipole Transmission line (Port Qasim – Faisalabad West)

Cross-border Interconnections
1. Import of Power from Tajikistan/Kyrgystan through Afghanistan (CASA-1000 Project)
2. Import of Power from Iran
3. Import of Power from India
Import of 1000-1300 MW Power through CASA-1000 Project
(Pakistan – Afghanistan – Tajikistan – Kyrgyzstan Interconnection)
Transport of surplus power (1300 MW) during 5 summer months from Kyrgyz Republic and Tajikistan to Afghanistan (300 MW) & Pakistan (1000 MW)

Scope of Work:
- 750 km ±500 kV HVDC Bipole between Tajikistan and Pakistan via Afghanistan; and Converter Stations at Sangtuda, Kabul & Peshawar
- 477 km 500 V AC link between the Kyrgyz Republic (Datka) and Tajikistan (Khoujand)
- AC system upgrades on existing lines
Pakistan - Iran Interconnections
Pakistan – Iran Interconnection Projects

1. Existing Interconnection Projects:

 Import of 74 MW Power by Pakistan in border areas of Pakistan (in Baluchistan Province):

i. 70 MW at 132 kV (continued since 2003. Initially, it was 35 MW)
 ii. 4 MW at 20 kV (continued since 2002)
 iii. (Tariff: US cents 7-10. Contracts is renewed after every 3-years)

2. Planned Interconnection Projects:

 i. Import of 100 MW at Gwadar through 220 kV D/C T/Line (contract signed)

 ii. Import of **1000 MW at Quetta through ±500 kV HVDC Bipole** (MoU signed)

For import of power from Iran, Tariff is linked with International Oil prices.
Pakistan - India Interconnection
Scope of Work:
A pre-feasibility study for import of 500 MW power by Pakistan from India was conducted by consultants (M/s Tetra Tech, USA and M/s Hagler Bailly, Pakistan in 2012-13. The study was funded by World Bank.

In the study report, the following scope of transmission interconnection was proposed:

- 400/220 kV HVDC Back-to-Back Convertor Station in Pakistan
- 400 kV D/C T/Line (approx. 26 km) from Balachak to Pak-India Border.
- 400 kV D/C T/Line (approx. 10 km) from Convertor Station to Pak-India Border
- 220 kV D/C T/Line from Ghazi Road to Convertor Station

Cost Estimates: US$ 119.4 million
Thank You!