Renewable Energy Tariff (FiT) and Financial Analysis Tool

Ashwin Gambhir
Fellow, Prayanas (Energy Group)

SAARC Knowledge Sharing Workshop on Modern Techniques including Renewable Energy Auctions for Economizing Renewable Energy Tariff
9-10 May 2018 in Colombo, Sri Lanka
Presentation Outline

• Renewable Energy Feed-in-tariffs or preferential tariffs in India
 – Legal, policy-regulatory framework
 – Experience from state electricity regulatory commissions and central electricity regulatory commission.

• Renewable Energy Tariff and Financial Analysis Tool
Policy framework

• National Electricity Policy, 2006:
 – set a tariff with appropriate **differential** with respect to conventional sources for such procurement of RE...
 – RE procurement by DISCOMs to be done at **preferential** tariffs till they became competitive with conventional sources.

• Based on these policy directives and legal framework under the Electricity Act, 2003, all state regulators came out with tariff and RPO regulations.
 – Each state has technology specific preferential, i.e. feed-in-tariffs
 – essentially generic regulated cost plus tariffs which typically include a 16% post-tax return on equity
RE Tariff Regulations

• Renewable Energy applicable technologies
• Control/Review period: 3-5 years
• Tariff period: generally same as life of plants.
• Tariff structure:
 – Single part levelised tariff
 – fixed cost components: (a) Return on equity; (b) Interest on loan capital; (c) Depreciation; (d) Interest on working capital; (e) Operation and maintenance expenses;
 – For technologies with fuel (biomass, cogeneration), two components, fixed part component and fuel cost.
• Despatch principles: Must run status, need to follow forecasting and scheduling regulations for wind/solar.
Prayas Energy Group, Pune

Financial principles

- Capital costs (Capex)
- Debt-equity ratio
- Loan tenure, interest rates
- Depreciation
- Return on equity (RoE)
- Interest on working capital
- Operation and Maintenance charges (O&M)
- Rebate / Late payment surcharge
- Sharing of CDM benefits
- Subsidy / Incentives by Govt; taxes and duties
Technology specific parameters

• Generation, i.e. Capacity Utilization Factor
 – Wind: 22-35%, depending on annual wind power density measured at 100 m.
 – Small Hydro: 30-45% depending on region
 – Biomass: 70-80%; cogeneration: 45-53%
 – Solar PV: 19%
 – Solar thermal (CSP): 23%

• Auxiliary consumption for SHP, Biomass, solar PV, CSP

• State Heat Rate, fuel costs by state and calorific values for technologies with fuel use (biomass, cogeneration, biogas, MSW).
Broad process

• Collate latest data on various parameters needed for calculating the feed-in-tariff.
 – Most importantly capital costs, generation expectation (CUF), debt terms, fuel costs etc.
• Calculate tariffs for various renewable energy technologies and publish draft tariff order
• Carry out public process, analyze comments/suggestions received.
• Revise calculations as needed and publish final order applicable for next year.
• Process initiated suo-motu by Regulatory Commission
• Renewable Energy Tariff and Financial Analysis Tool
 – Modeled on the CERC FiT regulations
 – Detailed user guide
 – Detailed inputs, scenarios, sensitivity
Weakness of FiT

• Information asymmetry and lack of comprehensive granular data, especially related to costs and performance in the public domain limits the accuracy of the regulator’s assumptions w.r.t various input parameters.

• Different technologies may vary in terms of costs and performance. Different investors may have range of varying interest rates, expectations of returns etc.
 – However regulator needs to finally come out with best point estimates for various inputs.

• No pre-defined degression rates, linkage of FiTs to actual generation performance in India like in Germany.

• Experience of recent bidding based price discovery for solar PV and wind shows that FiTs had been estimated to be much higher than market estimates.
THANK YOU

ashwin@prayaspune.org

Prayas Energy Group
www.prayaspune.org/peg