Welcome
Dimensions - Indian Grid & Electricity Market

- **340 GW+** generation capacity
- **170 GW+** peak demand
- **~ 4 TWh** daily energy met
- **3.2 million km²** area footprint
- **1.3 Billion+** people served
- **2.5 GW+** international exchanges
- **5000+** market participants
- **50,000+** market transactions
- **100 TWh+** annual market trades
- **390,000 ckm+** EHV transmission
- **70 GW+** renewables
- **2** power exchanges
- **5000+** exchanges
- **2** power exchanges
- **10 +** HVDCs
Evolution of Indian Grid

Pre 1991: Five Regional Grids - Five Frequencies

October 1991: East and Northeast synchronized

March 2003: West synchronized with East & Northeast

August 2006: North synchronized with Central Grid

Dec 2013: All India Synchronized Grid

175 GW Renewables, Cross Border Interconnections, Distribution System Operators (DSOs), Storage, Electric Vehicles, Micro-Grids

Electricity Act, 2003

Merging of Markets

1000 MW units and HVDC, 765 kV, UMPP, Common Carrier - Transmission

Maps not to scale

Way Forward
POSOCO - Indian System Operator

- Integrated National Power system Operation through Six Control Centres
 - National Load Despatch Centre (NLDC)
 - 5 Regional Load Despatch Centres (RLDCs)
 - Northern RLDC (NRLDC)
 - Western RLDC (WRLDC)
 - Southern RLDC (SRLDC)
 - Eastern RLDC (ERLDC)
 - North-Eastern RLDC (NERLDC)

- Mandate through Electricity Act, 2003 Sec 26 – 29
- National Electricity Policy, 2005 Section 5.3.7
- Schedule ‘A’ Central Public Sector Enterprise (CPSE)
- Discharging Mission Critical Statutory Functions of National Importance
Role of System Operators in Indian Power Sector

<table>
<thead>
<tr>
<th>Policy Making</th>
<th>Central Government</th>
<th>CEA</th>
<th>State Government</th>
<th>Statutory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulators</td>
<td>Central Electricity Regulatory Commission</td>
<td>State Electricity Regulatory Commission</td>
<td>Statutory</td>
<td></td>
</tr>
<tr>
<td>System Operators</td>
<td>National Load Despatch Centre</td>
<td>Regional Load Despatch Centres</td>
<td>State Load Despatch Centres</td>
<td>Statutory</td>
</tr>
<tr>
<td>Generation</td>
<td>Central Generating Stations</td>
<td>State Generating Stations</td>
<td>Private Sector Players</td>
<td>Competition</td>
</tr>
<tr>
<td>Transmission</td>
<td>Central Transmission Utility</td>
<td>State Transmission Utilities</td>
<td>Private Sector Players</td>
<td>Regulated</td>
</tr>
<tr>
<td>Distribution</td>
<td>State Sector Distribution Licensee</td>
<td>Private Sector Distribution Licensee</td>
<td>Regulated</td>
<td></td>
</tr>
<tr>
<td>Markets</td>
<td>Trading Licensee</td>
<td>Power Exchanges</td>
<td>Bilateral Markets</td>
<td>Competition</td>
</tr>
</tbody>
</table>

‘Vital link’ between the administrators, planners & regulators on one end and physical system and market players on the other end
Role of POSOCO

POSOCO - Apex body to ensure integrated operation of the power system at inter-state level

Mission of POSOCO
“Ensure Integrated Operation of Regional and National Power Systems to facilitate transfer of electric power within and across the regions and trans-national exchange of power with Reliability, Security and Economy”

Generation Transmission Distribution
Key Areas of System Operation

Operational Planning
- Coordinating planned and emergency outages
- Assessment of transfer capability of the network
- Defense mechanisms; black start mock drills

Real Time Operation
- Close monitoring of the system parameters
 - Frequency, voltages, line loadings
- Visualization and Situational Awareness

Post Despatch Analysis
- Analysis of Grid Incidents
- Operational feedback to CEA and CTU

Power Supply Position
- Peak Demand ~ 170 GW
- Energy Met ~ 3.5 BUs/day
- Hydro Gen. ~ 712 MU/day (Max.)
- Wind Gen. ~ 370 MU/day (Max.)

Generation
- Installed capacity: 343 GW
 - Thermal: Coal-197 GW, Gas-25 GW
 - Hydro – 45 GW, Nuclear – 6.7 GW
 - Renewables ~ 70 GW
 - Wind-34 GW, Solar-22 GW

Transmission
- 11 Nos. HVDC Bi-pole/BtB
- 1 MTDC HVDC
- > 145 nos. 765 kV,
- > 1550 nos. 400 kV lines
- IR capacity ~ 78 GW
Harnessing Diversity...Regional Grids

Typical All India Load Curve

Seasonal Variation

Morning & Evening Peak @ 500 – 600 MW/min for 1 hour
International Exchanges

India

- Upto 500 MW export by India to Nepal
- Upto 1500 MW import by India from Bhutan
- Upto 650 MW export by India to Bangladesh
- Upto 3 MW export by India to Myanmar

Bhutan, Bangladesh and Nepal participating in the Indian Electricity Market
Transmission Planning

• **Need of new transmission systems:**
 – To meet forecasted demand
 – For evacuation of power from generating stations
 – For system strengthening (To achieve network security aspects)

• **Transmission Systems in India:**
 – Inter-state transmission system (ISTS)
 – Intra-state transmission system (Intra-STS)
Roles of ISTS and Intra-STS

• **ISTS schemes:** *[Top layer of national grid]*
 – Evacuation of power from inter-state generation stations which have beneficiaries in more than one state.
 – Onward transmission of power for delivery of power from inter-state generation stations up to the delivery point of the state grid.
 – Transfer of operational surpluses from surplus state(s) to deficit state(s) or from surplus region(s) to deficit region(s) as need under relevant regulation

• **Intra-STS schemes:**
 – Evacuation of power from state’s generating (both under state and private sector) stations having beneficiaries in that State
 – Onward transmission of power within the State from ISTS boundary up to the various substations of the state grid
 – Transmission within the state grid for delivery of power to the load centers within the state
Responsibilities

- **Central Electricity Authority (CEA):**
 - Prepare perspective generation and transmission plans and coordinate the activities of planning agencies [*Sec 73 of Electricity Act*]
 - Formulate short-term and perspective plans for development of the electricity system [*Para 3.2 of National Electricity Policy*]
 - Frame National Electricity Plan [*Sec 3(4) of Electricity Act*]
 - Considerations in National Electricity Plan:
 - Short-term and long term demand forecast for different regions
 - Suggested areas/locations for capacity additions in generation and transmission
 - Integration of such possible locations with transmission system and development of national grid
 - Different technologies available for efficient generation, transmission and distribution
 - Fuel choices based on economy, energy security and environmental considerations
Responsibilities

• **Central Transmission Utility (CTU):**
 – Network planning and development in accordance with National Electricity Plan
 – Discharge all functions of planning and co-ordination related to inter-state transmission system (ISTS) with *[As per Sec 38(2) of Electricity Act (EA)]*
 • State Transmission Utilities
 • Central government and State Governments
 • Generating Companies
 • Regional Power Committees
 • Central Electricity Authority
 • Transmission Licensees
 • Any other person notified by the Central Government in this behalf
 – Planning to be done in accordance with National Electricity Plan of CEA

• **State Transmission Utility (STU):**
 – Network planning and development in accordance with National Electricity Plan
 – Nodal agency for Intra-STS planning in coordination with distribution licensees and intra-state generators connected/to be connected in the STU grid *[Sec 39 of EA]*
CEA Manual on Transmission Planning

• Manual on Transmission Planning Criteria brought out by CEA
 – 1st Criteria issued in 1985, setting philosophy for regional self sufficiency
 – Revised in 1994
 – Latest revision : 2013
 – It covers :
 • the planning philosophy
 • the information required from various entities
 • permissible limits
 • reliability criteria
 • Broad scope of system studies, modeling and analysis,
 • Guidelines for transmission planning
For strengthening of Transmission Network

- Addition of new transmission lines/substations to avoid overloading of existing system including adoption of next higher voltage.
- Application of Series Capacitors, FACTS devices and phase-shifting transformers in existing and new transmission systems to increase power transfer capability.
- Up-gradation of the existing AC transmission lines to higher voltage using same right-of-way
- Re-conductoring of the existing AC transmission line with higher ampacity conductors
- Use of multi-voltage level and multi-circuit transmission lines
- Use of narrow base towers and pole type towers in semi-urban/urban areas keeping in view cost and right-of-way optimization.
- Use of HVDC transmission – both conventional as well as voltage source convertor (VSC) based
- Use of GIS/Hybrid switchgear (for urban, coastal, polluted areas etc)
Reliability Criteria

A. Criteria for system with no contingency (‘N-0’)
 – all the equipments shall remain within their normal thermal loadings and voltage ratings
 – angular separation between adjacent buses shall not exceed 30 degree

B. Criteria for single contingency (‘N-1’)
 – All the equipments in the transmission system shall remain within their normal thermal and voltage ratings after a disturbance involving N-1 contingency, without load shedding / rescheduling of generation
 – The angular separation between adjacent buses under (‘N-1’) conditions shall not exceed 30 degree
 – Transmission system shall be stable after it is subjected to one of the disturbances as specified
Reliability Criteria

C. Criteria for second contingency (‘N-1-1’)

– The system shall be able to survive a temporary single phase to ground fault on a 765kV line close to the bus. Single pole opening (100 ms) of the faulted phase and successful reclosure (dead time 1 second) shall be considered.

– The system shall be able to survive a permanent single phase to ground fault on a 400kV line close to the bus. Accordingly, single pole opening (100 ms) of the faulted phase and unsuccessful reclosure (dead time 1 second) followed by 3-pole opening (100 ms) of the faulted line shall be considered.

– In case of 220kV / 132kV networks, the system shall be able to survive a permanent three phase fault on one circuit, close to a bus, with a fault clearing time of 160 ms (8 cycles) assuming 3-pole opening.
Transmission Planning Studies

• Studies to be conducted for Transmission Planning:
 – Power Flow Studies
 – Short Circuit Studies
 – Stability Studies (including transient stability and and voltage stability)
 – EMTP studies (for switching / dynamic over-voltages, insulation coordination, etc)
Growth in Transmission lines

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HVDC</td>
<td>0</td>
<td>0</td>
<td>1634</td>
<td>4738</td>
<td>5872</td>
<td>9432</td>
<td>15556</td>
</tr>
<tr>
<td>765kV AC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1160</td>
<td>2184</td>
<td>5250</td>
<td>35301</td>
</tr>
<tr>
<td>400kV AC</td>
<td>6029</td>
<td>19824</td>
<td>36142</td>
<td>49378</td>
<td>75722</td>
<td>106819</td>
<td>172263</td>
</tr>
<tr>
<td>220kV AC</td>
<td>46005</td>
<td>59631</td>
<td>79600</td>
<td>96993</td>
<td>114629</td>
<td>135980</td>
<td>169956</td>
</tr>
<tr>
<td>Total</td>
<td>52034</td>
<td>79455</td>
<td>115742</td>
<td>147531</td>
<td>192535</td>
<td>248049</td>
<td>377520</td>
</tr>
</tbody>
</table>
Growth in Substation capacity

TRANSFORMATION CAPACITY (MVA)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>765kV AC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25000</td>
<td>194500</td>
</tr>
<tr>
<td>400kV AC</td>
<td>9330</td>
<td>21580</td>
<td>40865</td>
<td>60380</td>
<td>92942</td>
<td>151027</td>
<td>284197</td>
</tr>
<tr>
<td>220kV AC</td>
<td>37291</td>
<td>53742</td>
<td>84177</td>
<td>116363</td>
<td>156497</td>
<td>223774</td>
<td>333681</td>
</tr>
<tr>
<td>HVDC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5200</td>
<td>8200</td>
<td>9750</td>
<td>22500</td>
</tr>
<tr>
<td>Total</td>
<td>46621</td>
<td>75322</td>
<td>125042</td>
<td>181943</td>
<td>257639</td>
<td>409551</td>
<td>834878</td>
</tr>
</tbody>
</table>
Challenges

• Accuracy in assumptions: Load forecasts (Long-term forecasts in Electric Power Survey; Short-term forecasts in Annual Load-generation balance report)

• Uncertainty in upcoming generation projects

• Mismatch in schedules of planned ISTS and Intra-STS network
 – Under-utilisation of assets in some areas, congestion in others

• Is N-1 contingency enough to take care of low probability high impact events?

• How to accommodate RE generation in transmission network
 – Plan for additional transmission network?

• Operation of high capacity HVDCs
 – Agra HVDC
 – Low Short-circuit ratio of NER Grid (Voltage swings / surges)
 – Bi-directional flow on HVDC link

• Integration of 175GW of Renewable energy
Future Roadmap

- Ramping Requirements
- Reserves
- Smart Grid
- Cyber-Security
- Electricity Storage
- Grid Resilience
- Energy Efficiency
- Electric Vehicles