Global Transformation of the Electric Grid

Legacy Bulk Electrical System \[\rightarrow\] Microgrids

That Was Then... \[\rightarrow\] ...This is Now
Just What is a Microgrid

Modern microgrids include multiple generation/storage resources that continuously provide energy for a specific application.

A microgrid can be connected to a larger grid or operate independently without the need of the main grid.

Reasons for microgrids:

• Improved resiliency
• Economics
• Clean energy mandate
• Grid firming
• Peak demand reduction

A microgrid ranges in size from 2-3 KW to over 100 MW. They comprise of any combination of the following technologies:
Microgrid Applications

Off-Grid Microgrids
- Telecom sites
- Remote homes
- Forward operating bases
- Villages and small communities
- Island-Nations
- Mining operations

On-grid Microgrids
- Hospitals
- University campuses
- Data centers
- Communities
- Factories and offices
- Hotels
- Critical asset infrastructure
- End-of-the-line grid support
- Homes
Why is this Transformation Happening?

Modern hybridized microgrids are growing today because of one primary reason: economics.

In just the last decade, the cost of solar and wind have declined by as much as 90% and storage over 50%. They are fast becoming mature, bankable technologies.

A standard Power Purchase Agreement for:
- Wind: $.04/kWh (USD)
- Solar: $.06/kWh (USD)
The global microgrid market will rise from $9.8B in 2013 to $35B by 2020

—Transparency Market Research
In only the last five years more than 70,000 microgrids have been considered using HOMER software.

Over 650 microgrids have been considered in Pakistan.
A few Companies Investing in Microgrids

Developers
- REC
- Sanyo
- Shell
- HITACHI
- Hydro Tasmania
- CAT
- SIEMENS

Component Suppliers
- LEONICS
- TESLA
- XANT
- ABB
- EarthSpark
- Panasonic
- MiniSystem

Education
- Duke University
- EnElec
- EnSync
- Trojan
- CanadianSolar
- SolarCentury

Engineering Firms
- CADMUS
- NAVIGANT
- MIT
- TESS
- Solenergy
- Intelligent Energy
- ARUP

Government & Financial Institutions
- IFC
- IDB
- e.on
- Green Power

Utilities
- Enel
- Engie
- New York Power Authority
- Edison
- ConEdison
But What Technologies are Best?

The question is how much of what energy generation and storage technologies make the most economic sense?

• It depends on:
 o Available resources
 o Size and variability of loads
 o Equipment prices
 o Equipment performance/maintenance
 o Grid or no grid
 o On the ground conditions

How you get there is through Economic Optimization Modeling
HOMER = Hybrid Optimization of Multiple Energy Resources

- Technology agnostic software platform. Model virtually any type & combination of distributed energy generation and storage technologies.
- Simulates real-world performance and delivers a choice of optimized designs.

HOMER Energy is the leading software company for Economic Optimization for Microgrids and Demand Charge reduction in DER applications to understand least cost solutions.
HOMER® Pro

• Technology agnostic platform provides accurate, unbiased results

• Simplifies the complex process of determining lowest COE for microgrid and DER systems when considering multiple technologies

• Capable of modeling virtually any combination of energy generation and storage technology. Customize models to meet your specific needs

• Simulates the design with real-life resources, load data, and components operational costs

• Compare thousands of possibilities in a single model run

• Sensitivity analysis that allow for “what-if” scenarios through out the model. What-if fuel prices increase by 20% in five years?
HOMER PRO – How it Works

Project Inputs
- Load Profile
- Site-Specific Resources
- System Components

Analysis
- Sensitivity Analysis
- Optimization
- Simulation

Results
- Economic & Engineering
 - System Sizing
 - Performance Details
 - Financials
 - Various Reports
Consulting Services

Over the last two decades HOMER Energy has provided consulting services for companies and governments around the world as a leader in the areas of microgrids. A sample of our projects include:

- IRENA Report – minigrids technology Outlook
- Asian Development Bank HOMER Pro Training program 2015
- Hôpital Universitaire de Mirebalais 2014-2015
- Inter-American Development Bank (IDB) Sustainable Energy for Haiti 2014
- World Bank Eastern Caribbean Energy Regulatory Authority (ECERA), 2014
- Fort Bragg Analysis of Generation Alternatives, 2012
- Necker Island Conceptual Design and RFP Support, 2012
- Carbon War Room Island Initiative in Aruba, 2011
- Professional Capacity Development Using the HOMER Software for Hybrid Renewable Power Systems in Colombia, 2014
- Resource Mix and Generation Options for forming a Boulder Municipality, 2012 – 2013
- Hybrid Power Feasibility Analysis for 3 Remote Canadian Communities, 2012 – 2013
- Electric grid modeling of the Commonwealth of the Northern Marinas Islands (CNMI), 2012
- Secretariat of the Pacific Community Island Power Utilities Manager Training for the Federated States of Micronesia, 2012
- Renewable Energies for Remote Areas and Islands (REMOTE), 2012
- PLN Indonesia Training and Capacity Building in off-grid renewables and rural electrification, 2012
- USAID Powering Health, 2010 – Present
- Technical Support for Alaskan Wind-Diesel Systems, 2006
- Bermuda Electric Light Company - Integration of Distributed Renewable Power Projects into an Island Utility, 2007-2009
HOMER Energy Training

- Instructor-led training, available in-person or online.
- Train front-line sales engineers to use HOMER to qualify incoming leads.
- Train inside engineers to use HOMER to conduct competitive analysis of other products.
- Train engineers to use HOMER to establish the primary microgrid design.
Try HOMER for Free

Andy Kruse
VP Business Development
HOMER Energy
1790 30th Street, Suite 100
Boulder Colorado 80301

Phone: 928 380 3527
Email: andy@homerenergy.com
Web: www.homerenergy.com

HOMER’s demand charge reduction tool with utility rate database
(United States, Canada and Mexico)

https://www.homerenergy.com/homer-pro.html
HOMER’s “Flagship product” – Can model virtually any distributed
energy generation or storage technology on or off the grid.