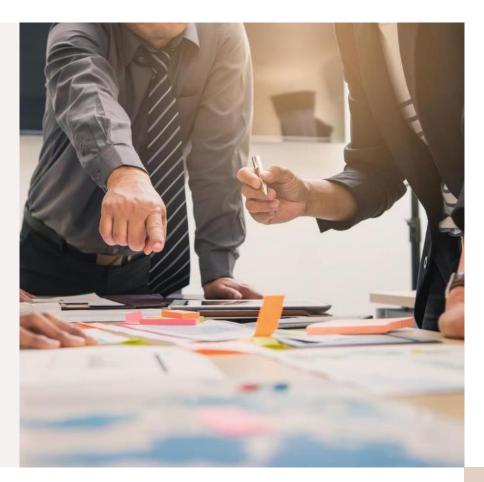


On-line Training of SAARC Professionals on Power Purchase Agreements of Renewable Energy Projects

Case studies of regional and international competitive procurements



November 11th 2021

Dr. Rakesh Kumar Goyal Managing Director, India Tetra Tech rakeshkumar.goyal@tetratech.com

Learning objectives

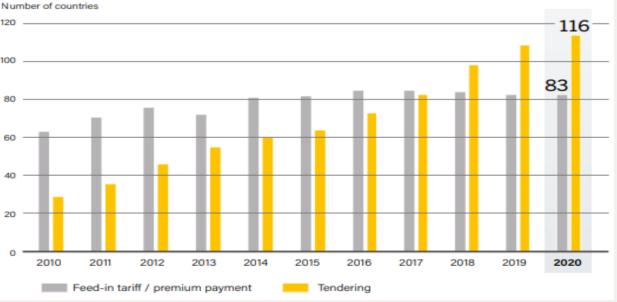
- Review global trends on renewable energy
- Learn about various experiences with system-friendly procurement
- Learn about experience transitioning to wholesale markets through feed in premiums
- Learn about procurement for mix-products

Agenda

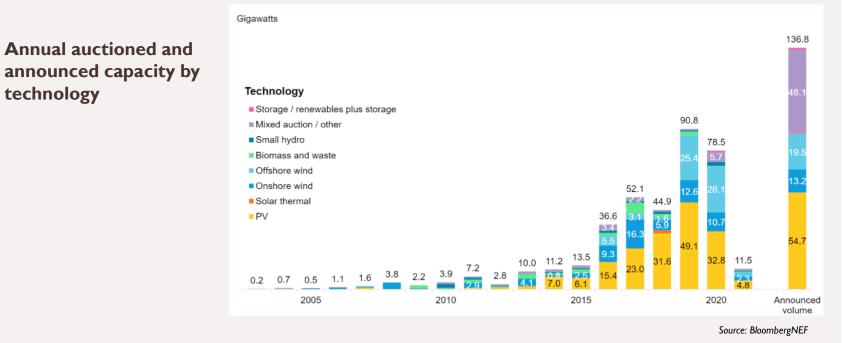
Global RE trends


System-friendly RE procurement

Global system friendly case studies of RE procurement


Case study: India 24x7 RE procurement

Global RE trends


Trend I: Countries are adopting auctions to meet climate commitments and lower cost of electricity

120 **Renewable Energy Feed-in Tariffs and** 100 Tenders, 2010-2020 80 60 40

REN21 Policy Database

Trend I: Countries are adopting auctions to meet climate commitments and lower cost of electricity

Trend 2 Auctions continue to push down prices worldwide

Abu Dhabi's 1.5 GW tender draws world record low solar bid of \$0.0135/kWh

India hails renewable milestone after first deal for 24/7 green power

The winning price was 2.90 rupees/kWh (\$0.038/kWh, \$38/MWh) for the first year of the 15-year deals, rising by 3% annually.

11 May 2020

Masdar of Abu Dhabi wins auction for Uzbekistan solar plants

APRIL 28, 2020

Central Asian country working closely with IFC to establish a robust public-private partnership programme

9 Jun 2021 | Michael Marray

Los Angeles solicits record solar + storage deal at 1.997/1.3-cents kWh

Xcel Attracts 'Unprecedented' Low Prices for Solar and Wind Paired With Storage

Bid attracts median PV-plus-battery price of \$36 per megawatt-hour. Median wind-plus-storage bids came in even lower, at \$21 per megawatt-hour.

JANUARY 08, 2018

Trend 3: Renewables are becoming least-cost generation options

At least two-thirds of the global population lives in a country where either onshore wind or utility-scale PV (or both) is the cheapest option for new bulk electricity generation.

Cheapest Source of new bulk generation, IH 2021

Source: BloombergNEF Note: The LCOE calculations exclude subsidies or tax-credits. Benchmark LCOE for each country in \$ per megawatt-hour

Trend 3: Renewables are becoming least-cost generation options

Sweden \$42 Spain Japan U.S. \$44 \$20 \$27 Brazil **Onshore** wind \$23 Offshore wind Utility PV - fixed axis South Africa Australia Utility PV - tracking \$27 \$21 Natural Gas - CCGT Coal Not covered

Cheapest Source of new bulk generation, IH 2021

New solar and onshore wind now competes on cost with existing coal and gas power stations in countries representing almost half of the world's population and 48% of electricity generation.

Note: The LCOE calculations exclude subsidies or tax-credits. Benchmark LCOE for each country in \$ per megawatt-hour

Trend 4: Auctions are evolving

Early Auctions

Addressing Grid Integration Electricity Markets Integration

Commercial and Industrial PPAs

India hits 100 GW renewables milestone

Solar's share in the installed 100 GW renewable energy capacity stands at around 44%, and wind at 40% as per the data available from India's Central Electricity Authority.

AUGUST 13, 2021 UMA GUPTA

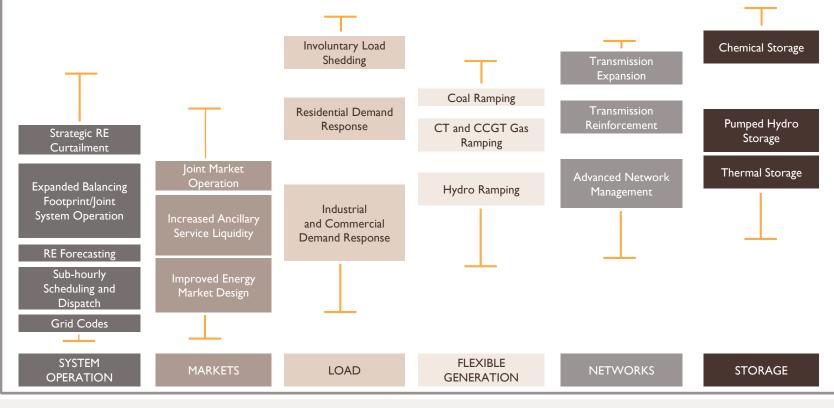
Amazon Signs PPA With TotalEnergies for 474 MW of Renewable Energy

Amazon Will help TotalEnergies enhance its digital transformation through cloud computing services

JUL 29, 2021 / HARSH SHUKLA / OTHER, RENEWABLE ENERGY

Serbia to switch from FIT to feed-in premiums and auctions

With its feed-in tariff program set to expire at the end of the year, Serbia will be looking to introduce new mechanisms to support renewables in the form of feed-in premiums and auctions. The country's PV uptake is still in its nascent stage however, with abundant regulatory obstacles still in place


MAY 24, 2018 MARIJA MAISCH

India's NTPC launches tender for 1 GWh of grid scale storage

State-run power producer NTPC has more than 65 GW of installed capacity, including gas, coal, hydro, and renewables-based power stations.

JUNE 29, 2021 UMA GUPTA

Trend 5: Countries are planning for grid integration of VRE

System-friendly procurement

Higher shares of renewable energy require new approaches to our energy system

DEMAND-SIDE INTEGRATION

GRID INTEGRATION

STRATEGIC ENERGY PLANNING

MARKET INTEGRATION

PROCUREMENT: ROUND-THE-CLOCK RE

Benefits of	More	More firm	Demand-based
	dispatchable RE	RE power (on-	supply
Round-the-	for supply-	site or different	managed by
Clock power	demand match	locations)	seller

System Friendly Procurement- A Cost-effective Solution

System Friendly Procurement - supply of power

from a portfolio of energy sources to meet the requirements of DISCOMs/Consumers while maintaining a maximum share of RE

Benefits

Manages variation in RE	Manages supply with
generation at supply side –	demand profile across
unburdening consumer/	various time slots and
utility	seasons
Determines optimal	Shifts responsibility of
capacity requirement of RE	managing portfolio of
sources- cost	assets to suppliers

Types of System Friendly Procurement

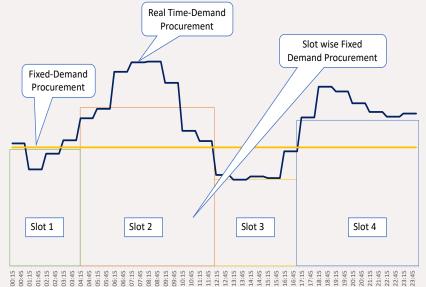
- Time-slot based procurement
- Round the Clock Power
- Time based Incentives and penalties
- Hybrid Systems
- Virtual Power Plants
- Location Signal

SYSTEM-FRIENDLY COMPETITIVE RENEWABLE ENERGY PROCUREMENT IN INDIA

DISCUMPEN THE VIEWS EXPRESSED IN THIS PUBLICATION DO NOT NECESSARILY REFLECT THE VIEWS OF THE UNITED STATES AGENCY FOR INTERNATIONAL DEVELOPMENT (USAD) OR THE UNITED STATES GOVERNMENT.

Comparison of RTC Design Options

Model	Benefits	Challenges
Fixed (Continuous) Demand procurement	 Simple procurement model for the supplier and buyer Expected to receive high responses from suppliers 	 Meeting peak demand – surplus power disposal Not meeting peak demand - buyer needs to find other avenues for procuring power – difficulty in management
Slot wise Fixed Demand procurement	• Higher potential to meet peak demands	 Same as above, but in lesser degree Comparatively complex Optimizing slots VS expected tariffs Structuring procurement Potentially higher cost of power
Real time Demand procurement	• No surplus power, no shortfalls	 Granular load curve forecasting needed - modelling Additional flexible generation capacity reserves needed Difficult to monitor the contracts Comparatively much higher expected cost of power

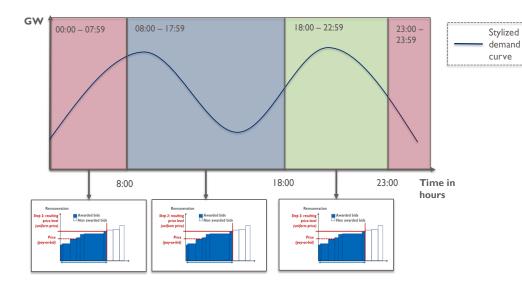

How RTC helps address RE Challenges?

Allow buyers to leverage the strengths of developers and solution providers to achieve their desired outcome

- Developers have better understanding of generation profiles of various technologies and geographies
- Developers can leverage new technologies and IT to design better integration methods

RTC procurement can be designed as per the need of the buyers

- Fixed (Continuous) Demand procurement
- Slot wise Fixed Demand procurement
- Real time Demand procurement


Other systemfriendly case studies

Chile's supply blocks enable continuous supply while mitigating resource risk for sellers (I/II)

Intraday and seasonal supply blocks in Chile's 2017 auction

Allowing intermittent technologies to optimize their feed-in potential and guarantee supply to distribution companies.

Objective

 Distribution companies provide demand projection

 \star

- Regulator aggregates projected supply requirements, conducts auction
- Bidders bid for one or several blocks representing projected (not real-time) demand
- Blocks have a base and a variable component to absorb unexpected demand increase
- Production deviations settled at spotmarket prices

Chile's supply blocks enable continuous supply while mitigating resource risk for sellers (II/II)

Intraday and seasonal supply blocks in Chile's 2017 auction

Benefit	Considerations
 Continuous power supply successfully contracted – all from new RE Contracted price of \$3.25ct (₹2.5)/kWh lower than spot market prices of \$5.5ct (₹4.1)/kWh 	 Compliance of bidders with delivery obligations cannot yet be evaluated as projects still under construction Precondition: sufficient information of distribution company on hourly/seasonal demand and generation patterns

I USD = 75.3 Indian Rupees on Jun 10, 2020. Source: Oanda

Sources: ACERA 2017, Comisión Nacional de Energía (CNE) 2017, MERCOM India 2020

Nevada's peak tariff rewards supply at peak demand periods (I/II)

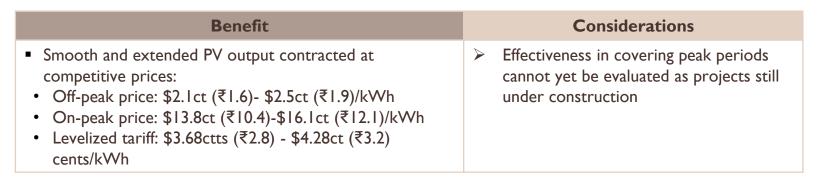
Nevada's 2019 auction

Objective Incentivize supply during summer evening hours (4 – 9 pm)

- Procurement of PV + storage capacity to help state meet 2030 target of 50% RE generation
- NV Energy (utility) defined on-peak tariff for summer evening hours (4 9 pm)
- > On-peak tariff paid is 6x higher than off-peak tariff paid to producers

	Hours																							
	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
January																								
February																								
March																								
April																								
May																								
June																								
July																								
August																								
Septembe	r																							
October																								
November																								
December																								

Off-peak price



Sources: ACERA 2017

Source: NV Energy, BloombergNEF

Nevada's peak tariff rewards supply at peak demand periods (I/II)

Nevada's 2019 auction

I USD = ~75.3 Indian Rupees on Jun 10, 2020. Source: Oanda

Sources: BNEF 2019, MERCOM India 2020

Germany's virtual power plants bundle diverse VRE and dispatchable generation to provide flexible power (I/II)

Objective

Optimize operation of generation, demand and storage assets to provide flexible power

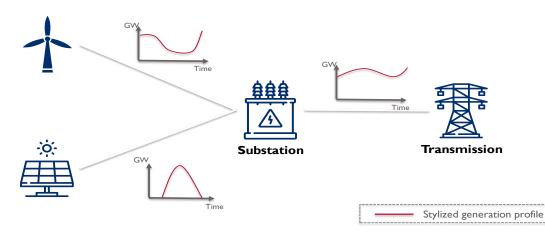
Simplified representation of virtual power plant (Next Kraftwerke)

- A control center operates the connected generation, demand, and storage assets
- Assets are forecasted, optimized, and traded in energy markets like one single power plant
- Example: Provision of reserves:
 - Pre-qualified assets participate in reserve market (operated by grid operators)

Germany's virtual power plants bundle diverse VRE and dispatchable generation to provide flexible power (II/II)

Benefit	Considerations
 Reduced provision of reserve energy by thermal generation: 2016: Provision of 67 MW as primary reserve, 67 MW as secondary reserve, and 1160 MW as tertiary reserve 	 Preconditions: Liquid wholesale power market and/or reserve market or alternatively PPAs with large consumers

Sources: Next Kraftwerke


Case Study: India 24x7 procurement

India's physical hybrids provide a more firm RE power and optimize grid infrastructure use (I/II)

	Efficient utilization of land (i.e., kWh/m2) and transmission capacity (i.e.,	
Objective	MWh/MW), as well as a reduction in the intermittency of VRE generation	\bigotimes
	to increase grid stability	

Simplified representation of a physical hybrid

- SECI auctions RE capacity to be procured as solar-wind-storage hybrid
- Capacity Utilization Factor (CUF) set at 30% for solar-wind
- Solar and wind installation are colocated and feed power into a pool substation.
- Power from the pool substation is evacuated into the transmission grid

India's physical hybrids provide a more firm RE power and optimize grid infrastructure use (II/II)

	Benefit	Considerations
-	 Solar-wind hybrid capacity contracted at competitive tariff: 2018: 840 MW at \$3.6ct (₹2.67 - ₹2.69)/kWh 2019: 720 MW at \$3.6ct (₹2.69 - ₹2.70)/kWh Comparison: Discom average purchase cost ~\$5.3ct (₹4)/kWh 	 Sites with good, often complimentary solar and wind resources available in India Uniform and ambitious CUF and ceiling prices across states Only achievable in regions with higher RE resource potential Can restrict number of bidders or risk the non-completion of awarded projects.

Sources: Next Kraftwerke

 (\cdot)

The Indian success story of RE 24x7 procurement – 3 types of tenders by SECI

RE + storage for peak supply 1200 MW ISTS-Connected RE Projects with assured Peak Power Supply in India	 Two-part tariff- "Off-Peak Tariff" fixed at INR 2.88/kWh and Peak Tariff Minimum annual CUF of 35%. Penalty- 25% of cost of shortfall, calculated as PPA tariff. Peak blocks (6am–9am; 6pm–12am) Off-peak blocks (9am – 6pm; 12am – 6am) 	 Winners: Greenko- 900MW with pumped storage; INR 4.04/kWh avg tariff & INR 6.12/kWh peak tariff ReNew Power - 300 MW with battery energy storage; INR 4.30/kWh avg tariff & INR 6.85/kWh peak tariff
100% RE + storage round the clock Round-the-Clock Supply of 400 MW RE Power to under Tariff-based Competitive Bidding (RTC-I)	 Supply obligation of min. 80% capacity utilization factor (CUF) 400 MW of capacity awarded 	 Winners: ReNew Power Continuous supply contracted at INR 2.9/kWh), levelized cost of INR 3.55/kWh – INR 3.60/kWh
Round the clock supply from RE and thermal Supply of 5000 MW RTC Power from ISTS-connected RE Power Projects, complemented with Coal based Thermal Power in India (RTC-II	 Minimum of 51% of annual energy from RE sources Meet demand at least 80% of time in a year. (70% monthly) Penalties 25% of PPA tariff on shortfall Composite tariff with fixed tariff + variable tariff 	

Capacities and Technologies Allowed						
Statement	SECI Tender	For IR				
Tender Capacity	2500 MW	150 MW				
Maximum Bid Capacity	2500 MW	I 50 MVV				
Minimum Bid Capacity	250 MW	50 MW bucket filling till 150 MW. Reverse auction.				
RE Component	51% of total energy from RE sources on annual basis	Minimum 80% from RE on an annual basis				
RE Technologies allowed	Wind, Solar and others	All RE Technologies recognized by MNRE and their combination along with ESS				
Non RE	Allowed	 Both coal, gas and hydro to be allowed Short term purchases for supplier to be allowed Long tie up need not be mentioned 				
Bid Process	 Tariff Based Competitive Bid Process Reverse Auction 	 Tariff Based Competitive Bid Process Reverse Auction 				
Tenure of PPA	• 25 years	25 years				

Project Component Capacities								
Statement	SECI Tender	For IR						
Project Component Capacities	Developers free to choose	Developers free to choose						
Supply from existing projects	 Not Allowed for RE sources Allowed for thermal sources 	 Allowed for non-RE component only New capacity development is compulsory for RE component 						
Changing the projects during PPA tenure	Not Allowed	Follow MoP Guidelines						
Commissioning								
Projects upto 1000 MW	24 months	18 months (not later than June 2023)						
Projects larger than 1000 MVV	30 months							

	Project Location and Open Access								
Statement	SECITender	For IR							
Location of Project components	 Can be co-located or located at different locations Project components can be located anywhere 	 Can be co-located or located at different locations Project components can be located anywhere 							
Delivery Points	 Multiple Delivery Points allowed ISTS Sub-station to which project components are connected 	 Multiple Delivery Points allowed ISTS Sub-station to which project components are connected 							
Connectivity	 All project components to be connected to ISTS Project components can be connected to different ISTS sub-stations 	 All project components to be connected to ISTS Project components can be connected to different ISTS sub-stations 							
Location of ESS	To be co-located with RE Components	Need not be co-located. As per existing RTC guidelines							
ISTS Connectivity	Developers' responsibility	Developers' responsibility							
ISTS Losses and Charges	Buyers' responsibility	Buyers' responsibility							

Statement	SECITender	For IR
Tariff structure	 Four part tariff Fixed RE Component Fixed Non RE Component Variable Non RE Component (Fuel) Variable Non RE Component (Transportation) 	Two part tariffRE componentNon RE component
General Eligibility Criteria	 Should be registered as a Company Consortium Allowed Foreign companies allowed 	 Should be registered as a Company Consortium Allowed Foreign companies allowed
Project Availability	 24 hours - 85% of allotted capacity on annual basis Peak Hours - 85% of allotted capacity on annual basis 	 24 hours - 85% of allotted capacity on annual basis No peak hour requirement At least 50% availability for each time block
Peak hours	 4 hours a day RLDC declares the peak hours periodically	To be removed

Round-the-clock procurement is driven by buyer requirements and demand characteristics

RTC concept is unique to India but touches upon system-friendly approaches piloted in other countries

Benefits of Round-the- Clock power	More dispatchable RE for supply-demand match	More firm RE power (on- site or different locations)	Demand-based supply managed by seller
Chile – Supply blocks			
Colombia - Supply blocks	\checkmark	\checkmark	\checkmark
Nevada – Peak tariffs	\checkmark	\checkmark	
Germany – Virtual Power Plant		\checkmark	~
India – Physical hybrids			

On-line Training of SAARC Professionals on Power Purchase Agreements of Renewable Energy Projects

