

Industrial Communication Protocol II: OPC UA

Hu Bo
Top10 China
10 December 2021

Profile

Researcher

- Motor system energy efficiency
- Appliance energy efficiency standards and labels
- Cooling efficiency
- Industrial IoT standardization

Programmer

- Embedded device and system
- IoT cloud OPC UA server
- Web application
- Web crawling

Coordinator

- International cooperation
- Technology transfer

Table of content

- Industrial Internet of Things (IIOT)
- IIOT Communication protocols
- OPC UA introduction
- OPC UA cases
 - Smart pump demonstrators
 - Smart sockets
 - Smart home

How machines or systems to "talk" with each other or "talk" to cloud?

What is IIoT?

IIoT refers to interconnected sensors, instruments, and other devices networked together with computers' industrial applications, including manufacturing and energy management.

- from Wikipedia

IIoT needs common understanding language – communication protocol

* BSAP	CC-Link	* CIP	- CAN
 CANopen 	 ControlNet 	 DeviceNet 	= DF-1
 DirectNET 	EtherCAT	 Ethernet Global Data (EGD) • Ethernet Powerlink
EtherNet/IP	* FINS	 FOUNDATION fieldbus 	 GE SRTP
HART Protocol	 Honeywell SDS 	HostLink	 INTERBUS
MECHATROLINK	 MelsecNet 	Modbus	 Optomux
PieP	Profibus	 PROFINET IO 	 SERCOS interface
SERCOS III	 Sinec H1 	SynqNet	 TTEthernet
RAPIEnet			
OPC DA	 OPC HDA 	· OPC UA	 MTConnect
1-Wire	 BACnet 	· C-Bus	* DALI
DSI	* KNX	 LonTalk 	 Modbus
oBIX	* VSCP	* X10	* xAP
ZigBee			
IEC 60870-5	■ DNP3	• IEC 60870-6	• IEC 61850
EC 62351	Modbus	Profibus	
ANSI C12.18	■ IEC 61107	 DLMS/IEC 62056 	• M-Bus
Modbus	ZigBee Smart Energy 2.0		
CAN	* FMS	FlexRay	• IEBus

What is OPC UA?

- OPC UA originated from OPC (Ole Process Control) from 1995
 - OPC DA
 - OPC HDA
 - OPC Alerts & Event
- OPC UA is Open Platform Communication Unified Architecture, a new generation of OPC standards
- Supported by international companies
 - Microsoft
 - ABB
 - Siemens
 - •

OPC UA features

- An IEC international standard IEC 62541
- Client server communication model
- Focus on communicating with industrial equipment and systems for data collection and control
- Open freely available and implementable under GPL 2.0 license
- Cross-platform not tied to one operating system or programming language (Windows, Linux, Android, etc)
- Service-oriented architecture (SOA)
- Inherent complexity in September 2020, the specification consisted of 3151 pages in 15 documents
- High security functionality for authentication, authorization, integrity and confidentiality
- Integral information model for specific industries, such as oil, gas, buildings

OPC UA Open resources

- Official organization: OPC Foundation https://opcfoundation.org/
- Free documents: standards and specifications are free
- Lots of free resources for all platforms and languages:
 - OPC UA .Net Standard (C#)
 - Open 62541 (C)
 - S2OPC project (C)
 - Node-opcua (Javascript)
 - Python-opcua (Python)
 - •

OPC UA Standard – IEC 62541

- Part 1: Overview and Concepts
- Part 2: Security Model
- Part 3: Address Space Model
- Part 4: Services
- Part 5: Information Model
- Part 6: Mappings

- Part 7: Profiles
- Part 8: Data Access
- Part 9: Alarms and Conditions
- Part 10: Programs
- Part 11: Historical Access
- Part 12: Discovery and global services
- Part 13: Aggregates
- Part 14: PubSub

OPC UA Standard – IEC 62541 documents

- oPC 10000-14 UA Specification Part 14 PubSub 1.04.pdf
- OPC 10000-15 UA Specification Part 15 Safety 1.04.pdf
- OPC 10000-17 UA Specification Part 17 Alias Names 1.04.pdf
- oPC 10000-200 UA Specification Part 200 Industrial Automation 1.00.0.pdf
- OPC UA Part 1 Overview and Concepts 1.03 Specification.pdf
- OPC UA Part 2 Security Model 1.03 Specification.pdf
- OPC UA Part 3 Address Space Model 1.03 Specification.pdf
- OPC UA Part 4 Services 1.03 Specification.pdf
- OPC UA Part 5 Information Model 1.03 Specification.pdf
- OPC UA Part 6 Mappings 1.03 Specification.pdf
- OPC UA Part 7 Profiles 1.03 Specification.pdf
- OPC UA Part 8 DataAccess 1.03 Specification.pdf
- OPC UA Part 9 Alarms and Conditions 1.03 Specification.pdf
- OPC UA Part 10 Programs 1.03 Specification.pdf
- OPC UA Part 11 Historical Access 1.03 Specification.pdf
- OPC UA Part 12 Discovery 1.03 Specification.pdf
- OPC UA Part 13 Aggregates 1.03 Specification.pdf

OPC UA Target applications

OPC UA Client architecture

OPC Server architecture

OPC UA – chained server

Case 1: Smart pump demonstrator

Case 1: modelling

Equipment	Number of devices	Comments	
VFD	5	ABB ACS310 series, 1 bigger VFD and 4 smaller ones	
Motor	5	China Southern Pump, 1 motor with 1.5 kW and 4 small mowith 0.5 kW	
Pump	5	China Southern Pump, 1 big pump 1.5 kW and 4 small pumps with 0.5 kW	
Flow meter 1	2	Asmik smart electromagnetic integrated flowmeter for big pump system and main output pipe of small pump systems	
Flow meter 2	2	Asmik smart electromagnetic split flowmeter for small pump system #1 and #3	
Pressure meter	10	Asmik smart pressure meter for all pump systems installed before and after the pump	

Case 1: OPC address space modelling

_					
	Pur	mpDemonstrators ^	Name	Data Type	Value
	₽ - 1	10000	■NodeId	NodeId	ns=4; i=40
	+ ···	ActivateGatewayTimingSch	■NodeClass	Int32	Variable
	+ ···	BigPumpSystem	■ BrowseName	QualifiedName	3:PumpDemonstratorCurrentStatus
		ChangeVFDOperationStatus	■ DisplayName	LocalizedText	PumpDemonstratorCurrentStatus
		GatewayTimingSchedule	■ Description	LocalizedText	
	+	GetGatewayConfig	■ WriteMask	UInt32	0
	#	GetGatewayVersion	■ UserWriteMask	UInt32	0
	#	Get0taFiles	■ Value	Variant	Byte[508]
	1	GetOtaProgress	■ DataType	NodeId	PumpDemonstratorStatusDataType
	+	GetPIDConfig	■ ValueRank	Int32	Scalar
	+	GetPumpDemonstratorSampl	■ ArrayDimensions[]	UInt32	
	1	GetPumpDemonstratorSampl	■ AccessLevel	Byte	Read
	+	GetPumpSystemCurves GetSimulateCurveFile	■ UserAccessLevel	Byte	Read
	+	HttpOTAUpdateSystem	■ MinimumSamplingInterval	Double	0
	±	IsInOta	Historizing	Boolean	False
	±	IsSimulating	■ RolePermissions	Variant	
	H	OtaProgress	■ UserRolePermissions	Variant	
	±	OtaUpdate	■ AccessRestrictions	UInt16	0
	+	PingGateway	■ AccessLevelEx	UInt32	0
		PumpDemonstratorCurrentS			
	+	RestartGateway			
	.	SendUaOtaDataChunck			
		SetGatewayConfig			
	+	SetPIDConfig			
	+	SetPumpDemonstratorSampl			
	+	SetPumpDemonstratorSampl			
	+	SetPumpSystemFlowPIDMode			
	±	SetSimulatingSpeedRatio			
	+	SetVFDFrequency ~			
	<	>			

Case 2: smart socket

Case 3: smart home

Thank You!

Hu Bo

Director of Top10

hu.bo@top10.cn