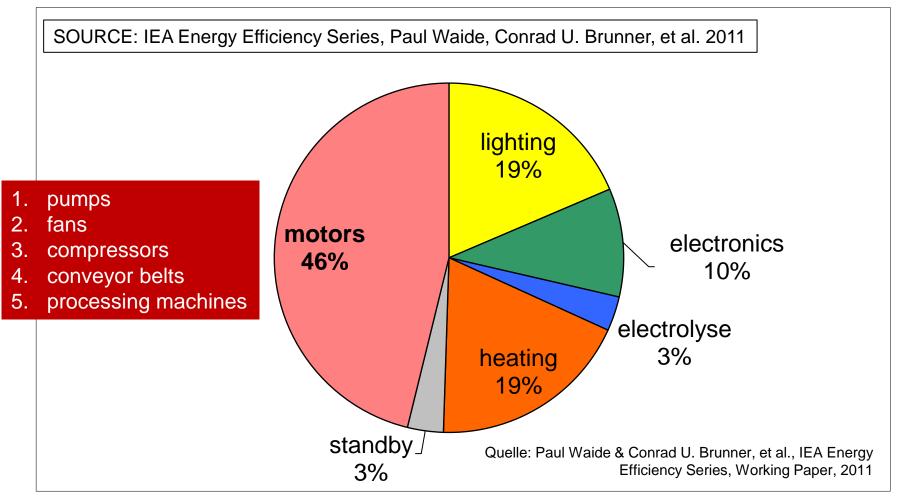


Rolf Tieben

- engineer of Mechatronics
- co-owner of Impact Energy
- program leader of

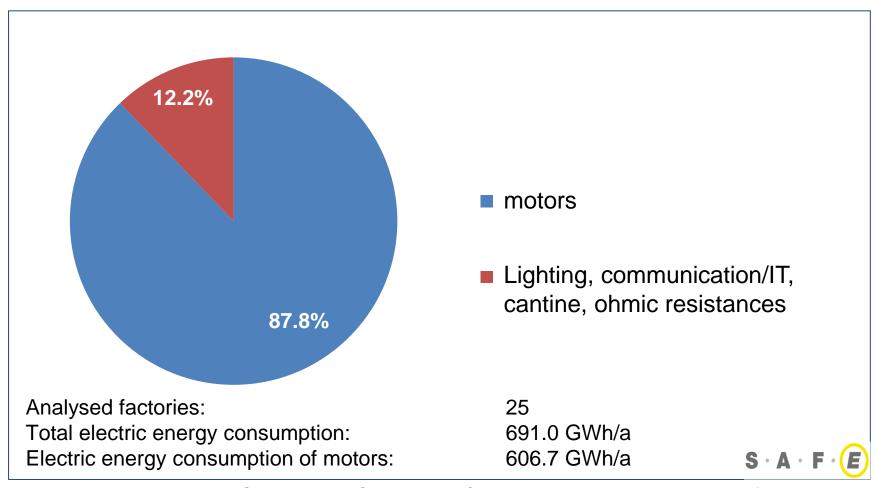
"The information platform for efficient motor driven systems in Switzerland"

Rolf Tieben

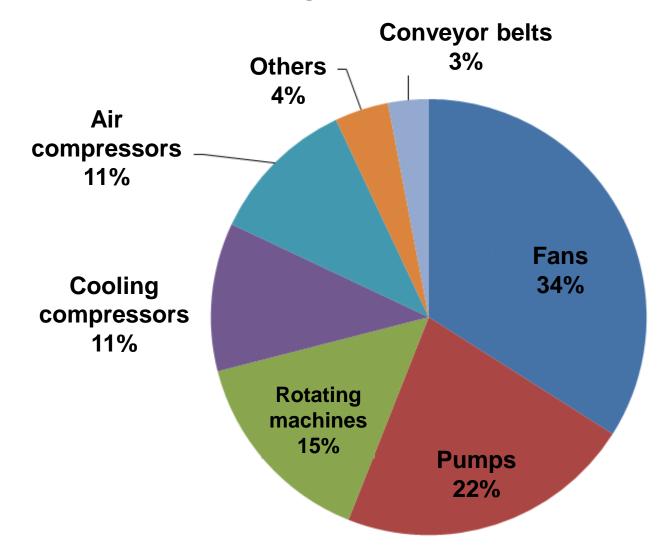


Content

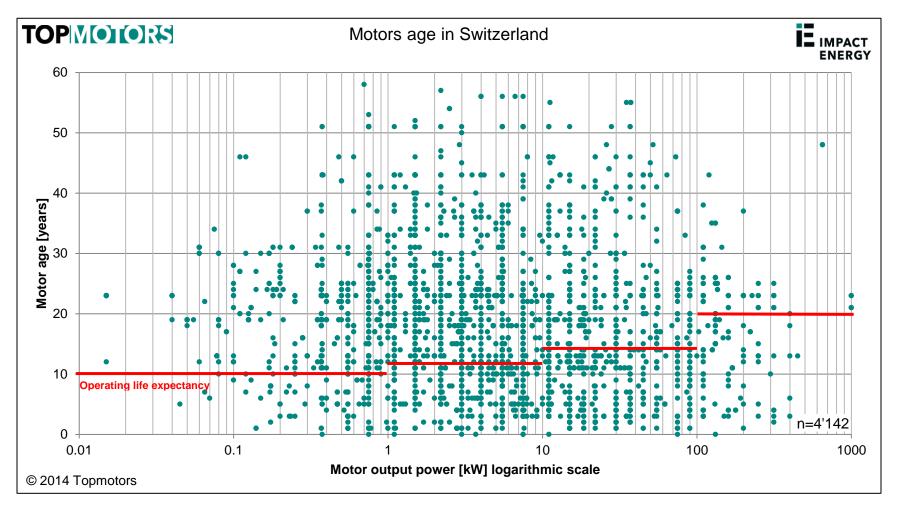
- Share of motors in energy consumption
- Results and findings from "Easy"
- Efficiency
- What is a electric motor system?
- Fans, pumps, VFD, transmissions
- Saving potentials?
- Tools (SOTEA, ILI+, Motor Systems Tool)


Global eclectricity consumption

Source: IEA Energy Efficiency Series, Paul Waide, Conrad U. Brunner, et al. 2011


Electricity in industry

Source: Easy Switzerland, Conrad U. Brunner, Rita Werle, Rolf Tieben, 2013


Share of energy consumption

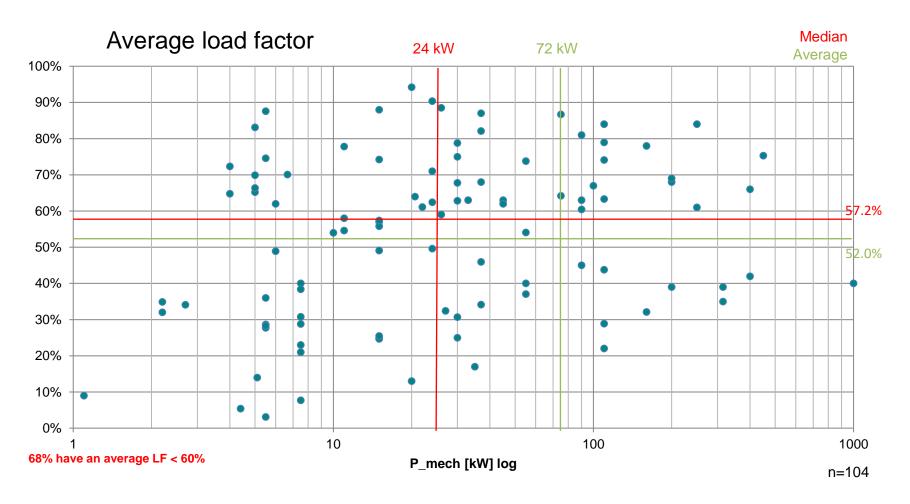
n=4'142

Motors are too old



56% of the analysed motors are too old- in average 99% too old

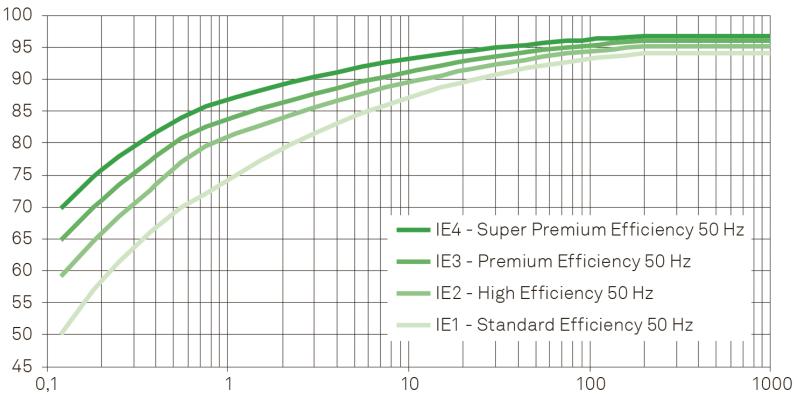
Source: Easy (Switzerland), Conrad U. Brunner, Rita Werle, Rolf Tieben, 2013


VFD ins Swiss industry

SOURCE: Easy (Switzerland), Conrad U. Brunner, Rita Werle, Rolf Tieben, 2013

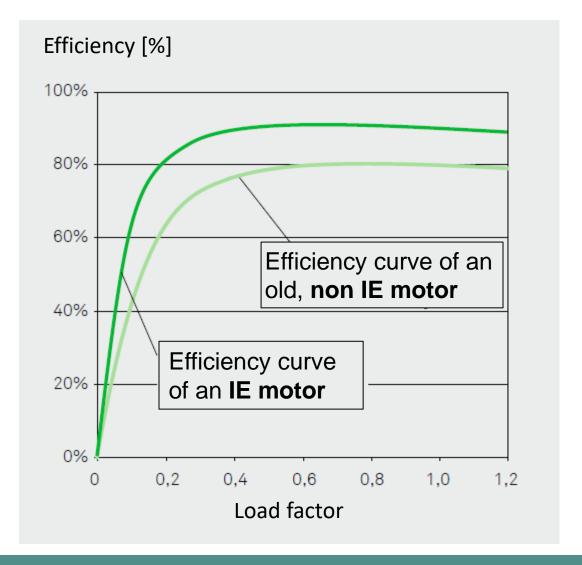
Average load factor

SOURCE: Easy (Switzerland), Conrad U. Brunner, Rita Werle, Rolf Tieben, 2013


Key findings

- 56% are already older than their operating life expectancy (10-20 years), in avarage twice as old
- 2. 68% of the measured motors have been oversized (LF <60%)
- 3. less than 20% already have a VFD
- 4. motor systems are rarely designed to meet the real needs of the process
- 5. qualified staff is available but without experience in the field of energy efficient motor systems
- 6. the savings potential is often between 20-30%, depending on the initial situation.

IEC efficiency classes for motors


Efficiency at nominal power [%]

Mechanical motor output power [kW] log scale

Efficiency in partial load

Energy costs

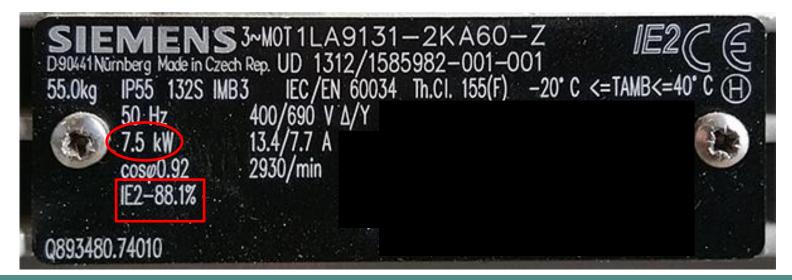
- 1. ??% of the liefecycle costs of a motor are energy costs
- 2. Within ?? operting hours, the energy costs as much as the purchase price of the motor.
- Quallat Da Almaida 2011

Save money Quelle: De Almeida, 2014

- increase reliability reduce risk
- reduce peak electrical power and consumption
- reduce environmental impact (electricity also from coal, nuclear)
- improve the good image of the company

Efficiency of motors

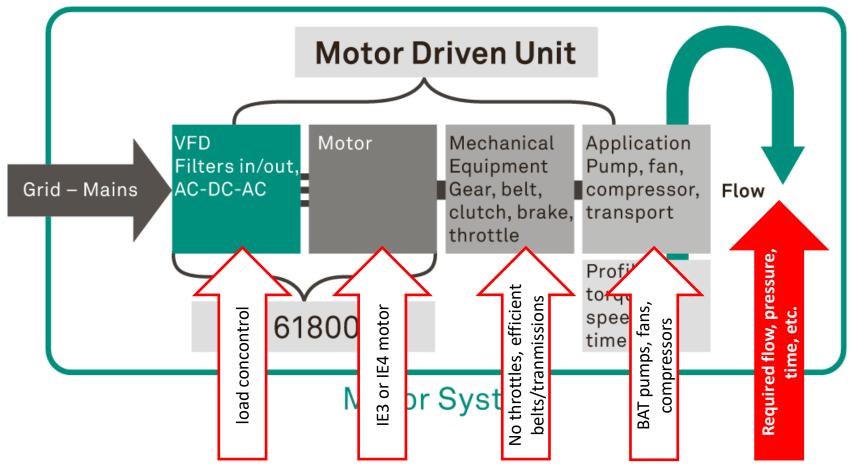
Output (P_{mech}: mechanic power) [kW]

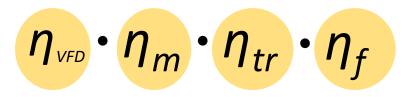

Efficiency $(\eta) =$

Input (P_{el}: electric power) [kW]

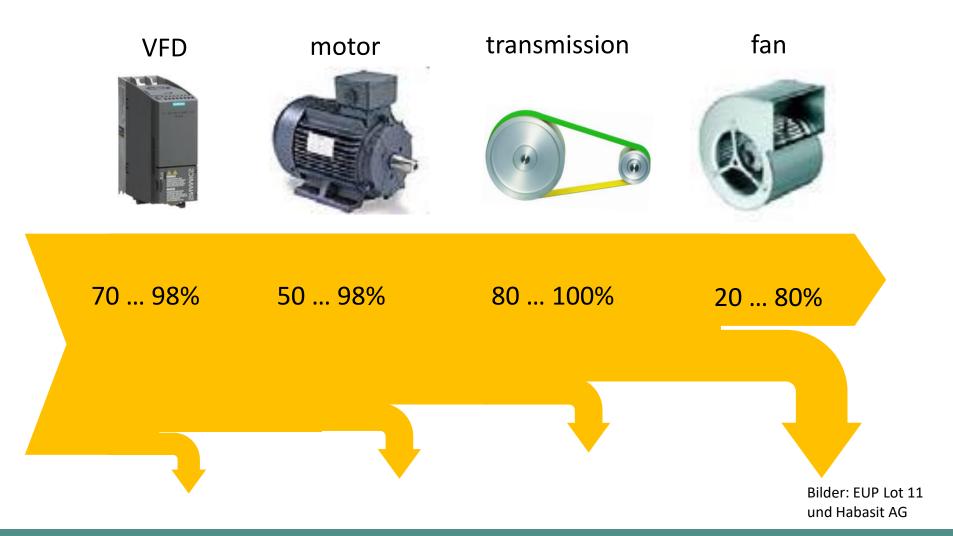
$$P_{el} = \frac{7.5 \ kW}{0.881} = 8.5 \ kW$$

$$P_{el} = 400 V * 13.4 A * 0.92 * \sqrt{3} = 8.5 kW$$


$$\eta = \frac{P_{mech}}{P_{el}} = \frac{7.5 \text{ kW}}{8.5 \text{ kW}} = 0.88 = 88\%$$


System apporach

- motors are "only" part of a drive system
- 1:1 motor replacement brings only small improvements



BAT: Best Available Technology

Efficient fan systems

VFD

nominal efficiency 96-98%

POSITIV

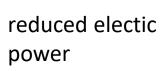
speed variation > regulated flow

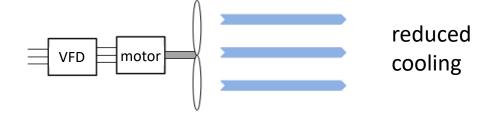
NEGATIV

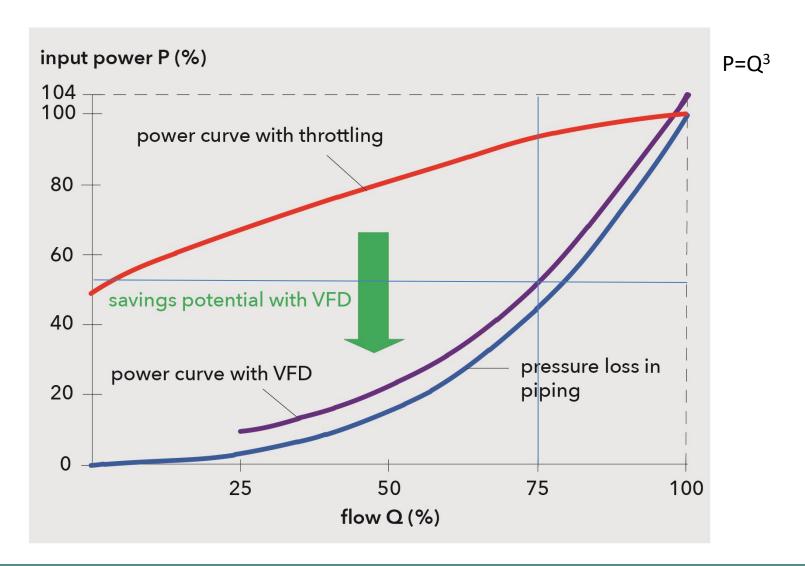
additional losses: VFD & motor low efficiency at low load high additional costs



How to use a VFD in fan systems

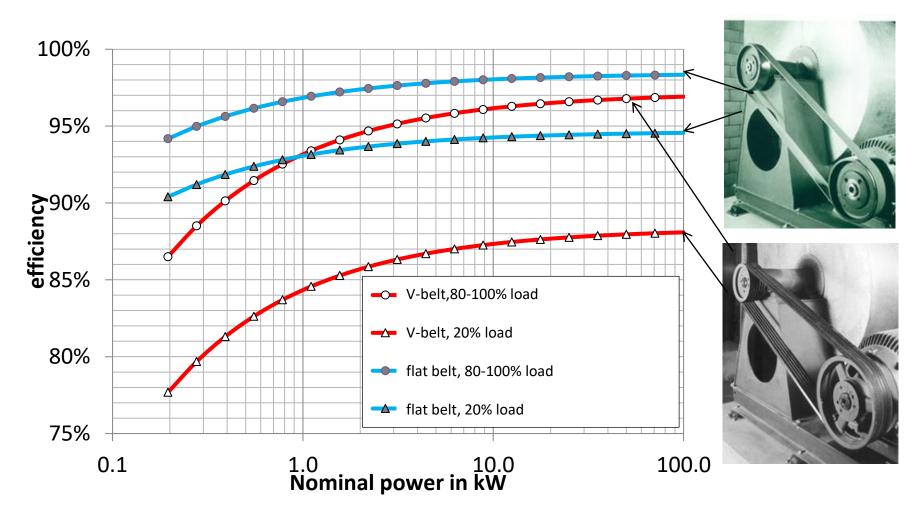

nominal operation




reduced cooling by reducing the speed

Saving potential in closed systems

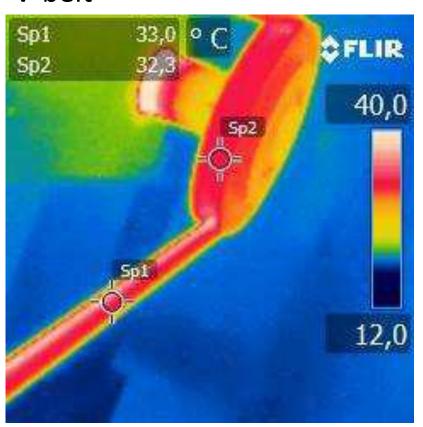
Transmission (belts)


Typical transmissions

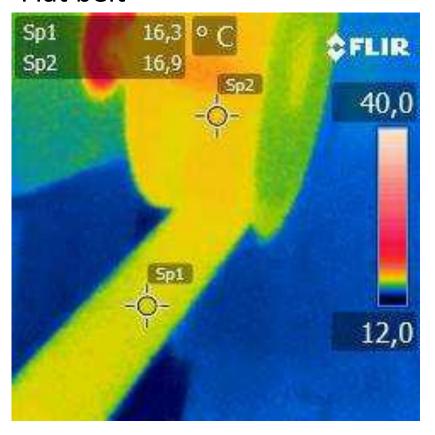
type	V-belt	flat belt	toothed belt
picture			
mounting retensioning	easy,	challenging,	medium,
	depends on product	no retensioning	no retensioning
operation Smooth operation lifetime abrasion/pollution	restless	calm	noisy
	short - Ion	long	long
	high - Iow	lery low	low
purchase price operating costs	low - medium	medium	high
	depends on abrasion	low	low

Source picture: http://keilriemen24.eu; <u>www.polytechna.ch</u> Quelle: Motor Summit 2014 / Effizienteransmissionssysteme / H. Huber

Efficiency of belts (partial and nominal load)

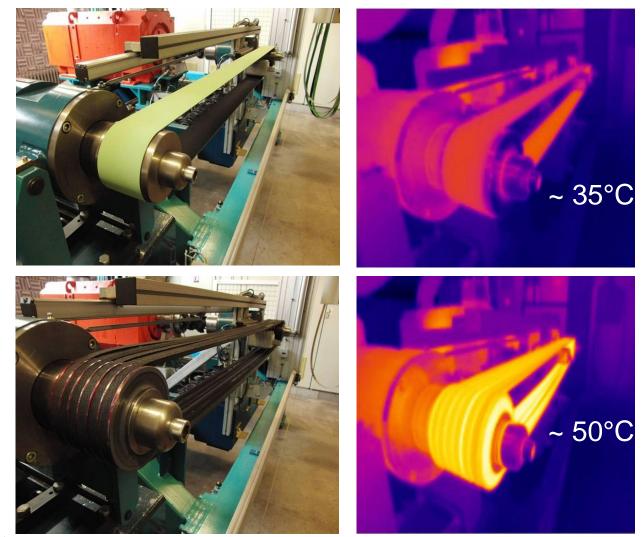


Fotos: Habasit AG

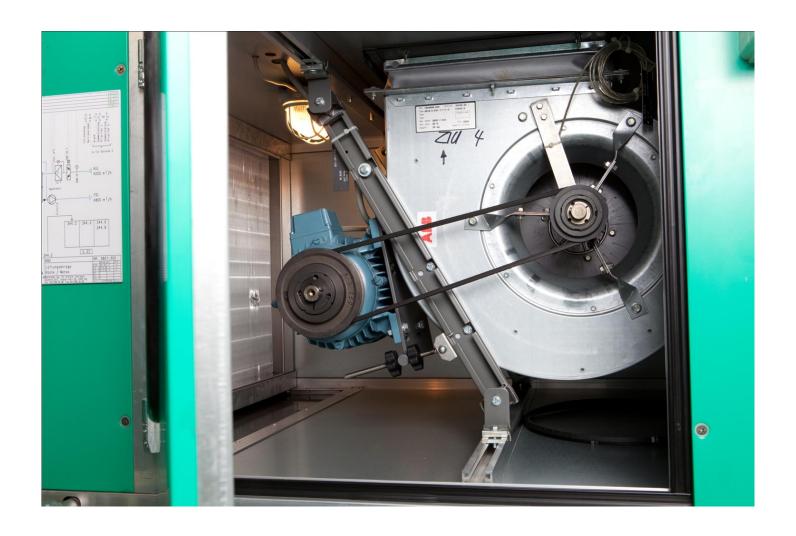


Temperatur of a V-belt and flat belt with pulley

V-belt

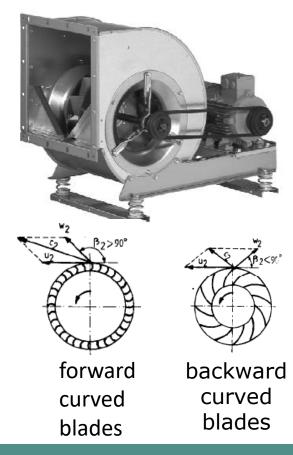

Flat belt

Source: Projektarbeit «Wirkungsgrad von Riemenantrieben», FHNW, Studiengang EUT 2013


Measurement Habasit AG, 2012/13

picture: Habasit AG

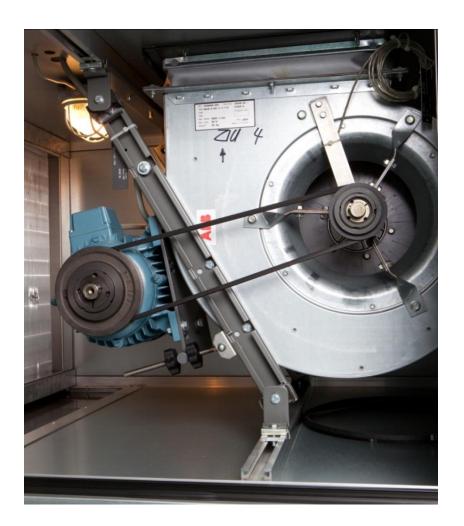
Fan system (motor + belt + fan)



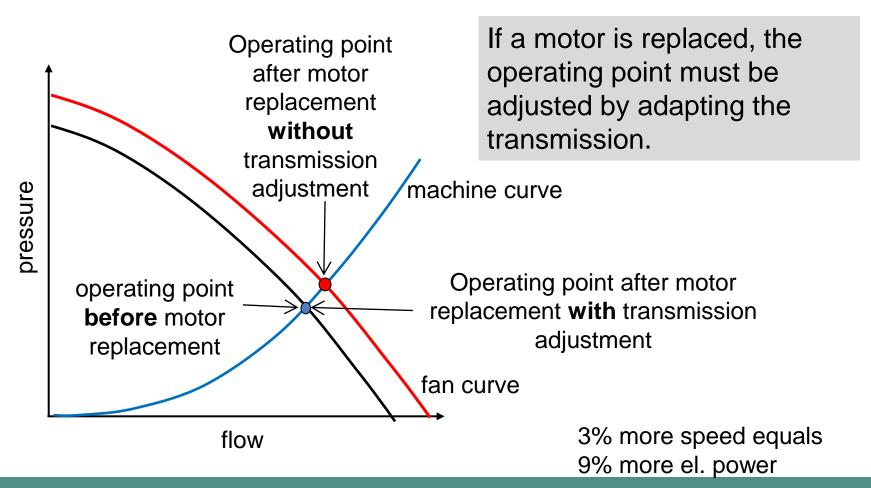
fan types

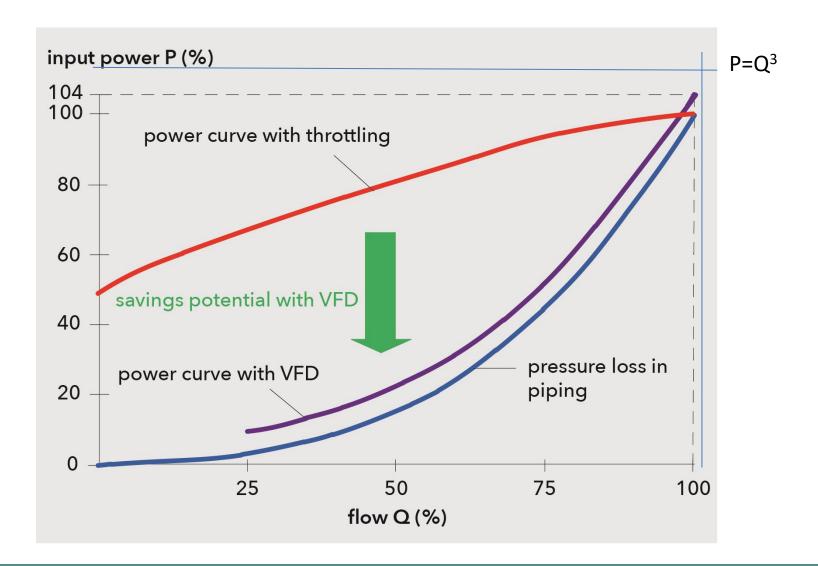
axial-fan

radial fan with spiral casing


radial fan with direkt drive (motor+VFD)

System optimisation


- 1. correct volume flow
- 2. conveying speed
- 3. channel size
- 4. operating hours (night?)
- 5. sensors in the room
- 6. variable volume flow


Efficient motors spin faster

New efficient motors have a 1-5% higher nominal speed

Reminder

Fans

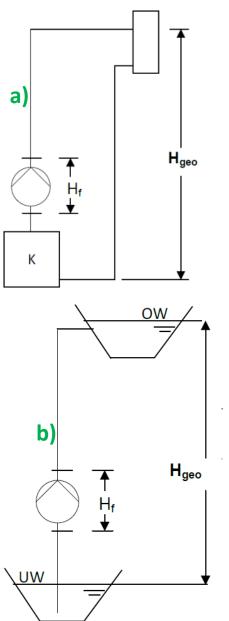
How can energy be saved?

- optimise operating hours
 - huge savings at almost no cost
- regulated operation with sensors
 - minimum required air flow
- correct sizing
 - Ideal pressure and flow
- Best Available Technology (BAT)
 - Efficient fans (e.g. EC fans), IE3 or IE4 motors

Fans

- multiple benefits:
 - less heating/cooling
 - less filter losses
 - less maintenance
 - less noise
 - better climate comfort

Pumps


Application categories

- circulation: circulation in closed circuits
 - Energy is used to overcome flow losses
 - e.g. heacting/cooling
- lifting, to a higher geodetic level
 - Most of the energy goes into lifting
 - e.g. in water supply systems or in sewage treatment plants (lifting inflow into basins)
- pressure increase: to higher pressure level
 - Only "lifting work", hardly any flow losses
 - e.g. drinking water supply in high-rise buildings (often multi-stage pumps)
- transport: moving media, mainly horizontally
 - Mainly flow losses, but often high pressures due to viscosity
 - e.g. in the food industry, to the next process or storage facility. Also suspensions (solids in liquids)

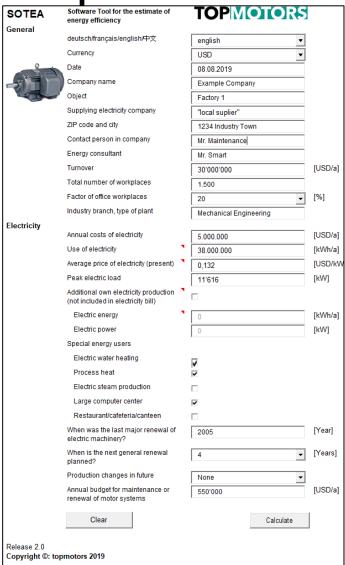
Closed vs. open systeme

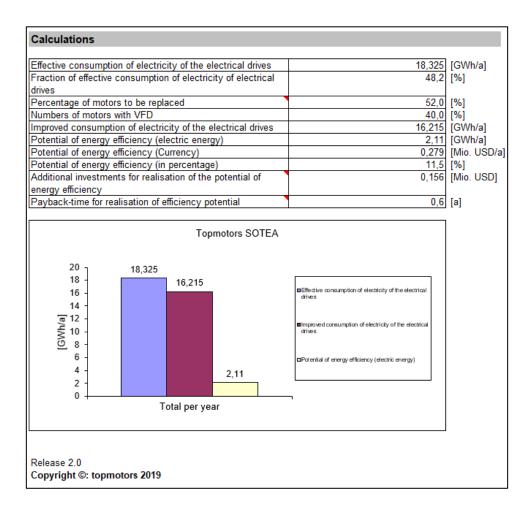
- a)in closed systems:
 What role does the geodetic height play?
 - What determines the required head H_f?
 - Pressure loss calculation: planner task
 - Pipe friction + "individual resistances»
- b)in open systems:
 What role does the geodetic height play?
 - What determines the required head H_f?
 - Geodetic hight + flow losses

Pumps

How can you save energy?

- optimise operating hours
 - huge savings at almost no cost
- regulated operation with sensors
 - minimum required flow
- correct sizing
 - Ideal pressure and flow
- Best Available Technology (BAT)
 - Effiziente Pumpen, IE3 oder IE4 Motoren




Systematic approach

Software tools SOTEA & ILI+

Step1: SOTEA

Potential assessment with SOTEA tool

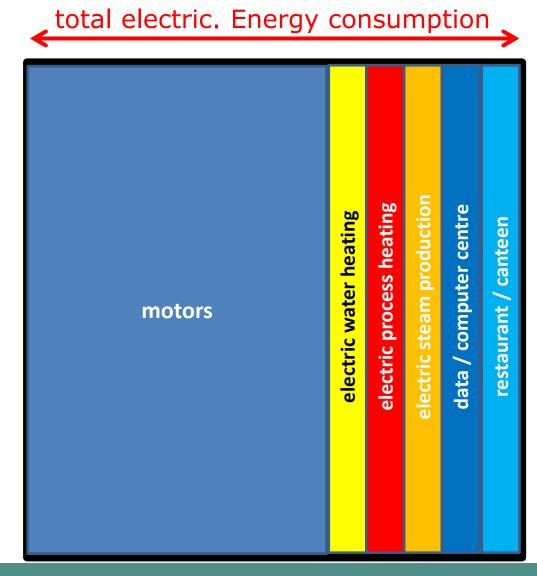
- Rough initial estimate of savings potential: 1 hour in discussion with management
- inputs:
 - annual electrical consumption and costs
 - average age of the machines
 - electrical use for non-motor applications
- outputs:
 - share of electrical consumption of motors
 - rough estimate of the savings potential
 - Amount of additional investment for energy improvements
- decision: Does a systematic analysis of the motor systems make sense?

Calculation of the savings potential

actual state:

Determining the efficiency

- by age (last renewal of electric machinery)
- motor size (standard distribution)
- share VFD: 20%


target state:

- IE4 motors
- share VFD: 60%
- Additional costs for better motors, VFD and mounting

Customize inputs

- Importat customizable values:
 - Share of "special energy users"
 - Share of VFD (before/after)
- "special energy users"
 - electric water heating
 - electric process heating
 - electric steam production
 - data/computer centre
 - restaurant/canteen

Step 1: SOTEA

SOTEA

General

Software Tool for the estimate of energy efficiency

deutsch/français/english/中文

Currency

Date

Company name

Object

Supplying electricity company

ZIP code and city

Contact person in company

Energy consultant

Turnover

Total number of workplaces

Factor of office workplaces

Industry branch, type of plant

TOPMOTORS

english ▼	
USD ▼	
08.08.2019	
Example Company	
Factory 1	
"local suplier"	
1234 Industry Town	
Mr. Maintenance	
Mr. Smart	
30,000,000	[USD/a]
1.500	
20 🔻	[%]
Mechanical Engineering	

Step 1: SOTEA

Electricity

Annual costs of electricity	5.000.000	[USD/a]
Use of electricity	38.000.000	[kWh/a]
Average price of electricity (present)	0,132	[USD/kWh
Peak electric load	11'616	[kW]
Additional own electricity production (not included in electricity bill)		
Electric energy	0	[kWh/a]
Electric power	0	[kW]
Special energy users		
Electric water heating	V	
Process heat	▼	
Electric steam production		
Large computer center	₹	
Restaurant/cafeteria/canteen		
When was the last major renewal of electric machinery?	2005	[Year]
When is the next general renewal planned?	4	[Years]
Production changes in future	None ▼	
Annual budget for maintenance or renewal of motor systems	550'000	[USD/a]
Clear	Calculate	

Step 1: SOTEA results

SOTEA Result

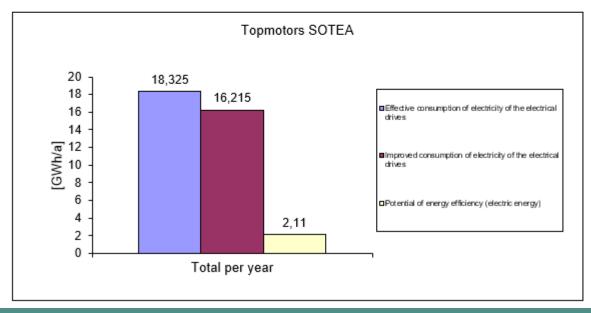
TOPMOTORS

Input record

General

Date	08.08.2019	
Company name	Example Company	
Factory name	Factory 1	
Power utility name	"local suplier"	
Zip code and city	1234 Industry Town	
Contact person in factory	Mr. Maintenance	
Energy consultant	Mr. Smart	
Turnover	30'000'000	[USD/a]
Total number of workplaces	1.500	
Factor of office workplaces	20	[%]
Industry branch, type of plant	Mechanical Engineering	
		ı

Electricity


Annual costs of electricity	5.000.000	[USD/a]
Consumption of electricity	38.000.000	[kWh/a]
Average price of electricity (present)	0,132	[USD/kWh]
Peak electric load	11'616	[kW]
Additional own electricity production (not included in	none	
electricity bill)		
Electric energy		[kWh/a]
Electric power		[kW]
Total consumption of electricity (incl. own production)	38.000.000	[kWh/a]
Special energy users	Electric water heating, Process	
	heat, Large computer center	
When was the last major renewal of electric machinery?	2005	[Year]
When is the next general renewal planned?	4	[Years]
Production changes in future?	None	
Annual budget for maintenance or renewal of motor systems	550'000	[USD/a]

Step 1: SOTEA

Calculations

Effective consumption of electricity of the electrical drives	18,325	[GWh/a]
Fraction of effective consumption of electricity of electrical	48,2	[%]
drives		
Percentage of motors to be replaced	52,0	[%]
Numbers of motors with VFD	40,0	[%]
Improved consumption of electricity of the electrical drives	16,215	[GWh/a]
Potential of energy efficiency (electric energy)	2,11	[GWh/a]
Potential of energy efficiency (Currency)	0,279	[Mio. USD/a]
Potential of energy efficiency (in percentage)	11,5	[%]
Additional investments for realisation of the potential of	0,156	[Mio. USD]
energy efficiency		
Payback-time for realisation of efficiency potential	0,6	[a]

User estimates

Special factory data

Currencies

	Exchange rate to CHF
CHF	1.00
EUR	0,82
USD	1,14
JPY	116,50
CNY	7,12

Discount rate

Discount rate compared to Swiss consumer	
price level	1

Constants

Constant	Default value	Used value
Electric energy use per office workplace and per		
employee [kWh/a]	250	250
Electric energy use for lighting per employee		
[kWh/a]	400	400

Fraction of special users of total consumption

Special users	Default value	Used value
Electric water heating [%]	5	5
Process heat (if relevant also include		
electrolysis, galvanic processes, others) [%]	30	30
Electric steam production [%]	5	5
Large computer data center (without AC) [%]	15	15
Restaurant/cafeteria/canteen (without AC) [%]	15	15

Replacement of existing motors

Fraction of replacement	Default value	Used value
Motors less than 5 years old [%]	0	0
Motors 5 years old [%]	20	20
Motors 10 years old [%]	40	40
Motors 20 years old [%]	60	60
Motors more than 25 years old [%]	80	80

Consideration of VFD

Use of VFD (Variable Frequency Drive)

Assumptions on VFD use	Default value	Used value
VFD use today [%]	20	20
Efficiency improvement with existing VFD []*	0,8	0,8
VFD use with new motors [%]	60	60
Efficiency improvement with new VFD []*	0,7	0,7

Payback calculation

Reduced motor costs	Default value	Used value
IE1 compared to IE4** [%]	30	30

Step2: ILI+

Software tool for the systematic assessment and energetic evaluation of all drives of a company

inputs:

- Nominal data of the motors
- age
- Operating hours
- VFD present (yes/no)

calculation:

- estimates the load factor according to nominal power
- defines efficiency of the motor according to age
- calculates the actual annual consumption
- calculates a possible savings potential through motor replacement

output:

- Identification of the biggest savings potentials
- Criteria for selecting the most economical improvement measures:
 - age
 - Operating hours
 - VFD present
 - nominal power

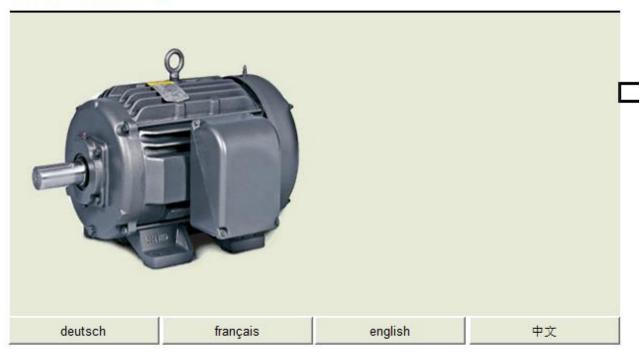
Structure and analysis of the motor list

Data collection

Standard values

Actual consumption

selection criteria (Decision Maker)


Recommendation (good economy)

ILI+: Language selection

ILI Plus - Release 2.0

ILI Plus 2.0 | © topmotors | 2014

ILI+: Menu

Menu

1 Basic datas

User estimate

Basic datas of motors

2 Decision Maker

Selection tool

Base/Support

Short instructions

Help

Programme estimate

Export of rough datas

Journal of modifications

User conditions

ILI Plus 2.0 | © topmotors | 2014

ILI+: User estimates

back to menu

User estimate

Indications about the company

Firm*	Example Company					
Factory	Factory 1					
Building	Building 1					
Examined installation	Produktionline 1					
company*	Mr. Company					
Energy consultant*	Mr. Expert					
Date of work amendments*	12.03.2015					
Currency*	USD ▼					

Indications about energy use

Total use of electricity*	2.500	[MWh/a]
Total costs electricity*	375.000	[USD/a]

Constants

Description	Unit	Energy cost
Energy price per kWh*	USD	0,15

Currencies

Currency (ISO-Code)
CHF
EUR
USD
JPY
CNY

Apply

Please note

^{*}Entry is compulsory, all entries must be confirmed by Return-button.

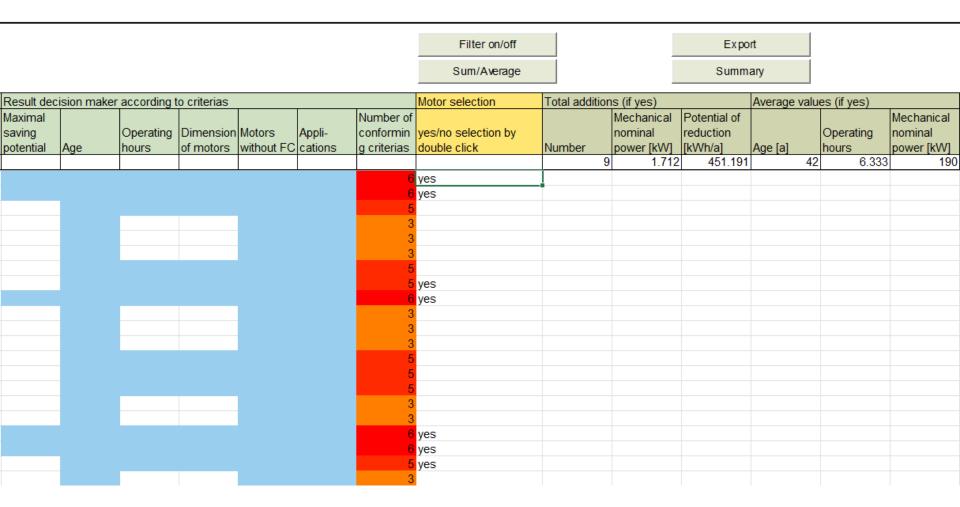
ILI+: Data base of motors

Data base of motors

Column on/off

Example row on/off

Basic i	information										
No.	Type of plant	Type of motor		No. of identi-			Operating hours	Application			
						[a]					
1	Example Plant 1	Motor 1	Manufacturer a	No 1	1970		8000	Pump			
2	Example Plant 2	Motor 2	Manufacturer b	No 2	1982	39	5000	Pump			
3	Example Plant 3	Motor 3	Manufacturer c	No 3	1982	39	4000	Pump			
4	Example Plant 4	Motor 4	Manufacturer a	No 4	1982	39	1500	Ventilator			
6	Example Plant 5	Motor 5	Manufacturer b	No 5	1975	46	1500	Ventilator			
7	Example Plant 6	Motor 6	Manufacturer c	No 6	1995	26	1500	Ventilator			
8	Example Plant 7	Motor 7	Manufacturer a	No 7	1995	26	4000	Compressor air compr.			
9	Example Plant 8	Motor 8	Manufacturer b	No 8	1982	39	4000	Compressor air compr.			
10	Example Plant 9	Motor 9	Manufacturer c	No 9	1982	39	8000	Compressor air compr.			
11	Example Plant 10	Motor 10	Manufacturer a	No 10	1992	29	1500	Compressor cold			
12	Example Plant 11	Motor 11	Manufacturer b	No 11	1992	29	1500	Compressor air compr.			
13	Example Plant 12	Motor 12	Manufacturer c	No 12	1992	29	1500	Compressor cold			
14	Example Plant 13	Motor 13	Manufacturer a	No 13	1978	43	2000	Pump			
15	Example Plant 14	Motor 14	Manufacturer b	No 14	1988	33	2000	Pump			


ILI+: Data base of motors

Validate

						Display				
	Mechanical	Loading	Loading		7		Consumption	7		
FC	nominal	factor,	factor,		Efficiency	Consumption	DESIGNATE	Potential of	Potential of	Potential of
available	power	estimated	measured	No. of poles	class	EFFECTIVE	D	reduction	reduction	reduction
	[kW]	[%]	[%]			[kWh/a]	[kWh/a]	[kWh/a]	[kWh/LC]	[USD/LC]
no	150	71		4	1	936.425	890.758	45.667	913.336	137.000
no	210	71	1	4	1	815.912	777.943	37.969	759.380	113.907
no	90	69	1	4	1	276.399	261.297	15.103	286.804	43.021
no	4	53	\$	4	1	4.250	3.639	611	6.296	944
no	5,5	55	J	4	7	5.874	5.117	7 756	7.909	1.186
no	4	53	<i>j</i>	4	z	4.160	3.639	521	5.367	7 805
no	90	69	1	4	1	274.280	261.297	12.983	246.546	36.982
no	12	60	1	4	7	34.878	31.431	3.448	38.308	5.746
no	370	73	\$	4	7	2.360.122	2.250.292	109.830	2.196.598	329.490
no	4	53	\$	4	7	4.160	3.639	521	5.367	7 805
no	4	53	<i>š</i>	4	/	4.160	3.639	521	5.367	7 805
no	4	53	5	4	1	4.160	3.639	521	5.367	7 805
no	55	65	J	4	1	80.904	75.888	5.015	77.509	11.626
no	55	65	,	4		80.197	75.888	4.309	66.588	9.988

ILI+: Data base of motors

ILI+: Decision Maker

- Evaluates the data of ILI+
- identifies the greatest savings potentials
- Compares motor data with selected criteria
- Marks fulfilled criteria in colour
- Sums up the fulfilled criteria
- Sums up the potential savings of the selected motors

ILI+: Decision Maker

Menu

1 Basic datas

User estimate

Basic datas of motors

2 Decision Maker

Selection tool

Base/Support

Short instructions

Help

Programme estimate

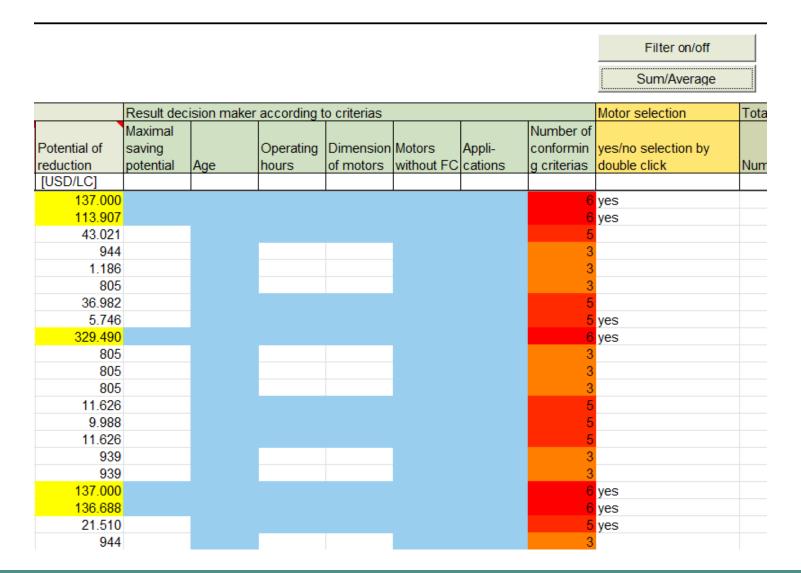
Export of rough datas

Journal of modifications

User conditions

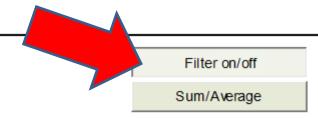
Decision Maker: criteria

Potential of reduction according to criteria

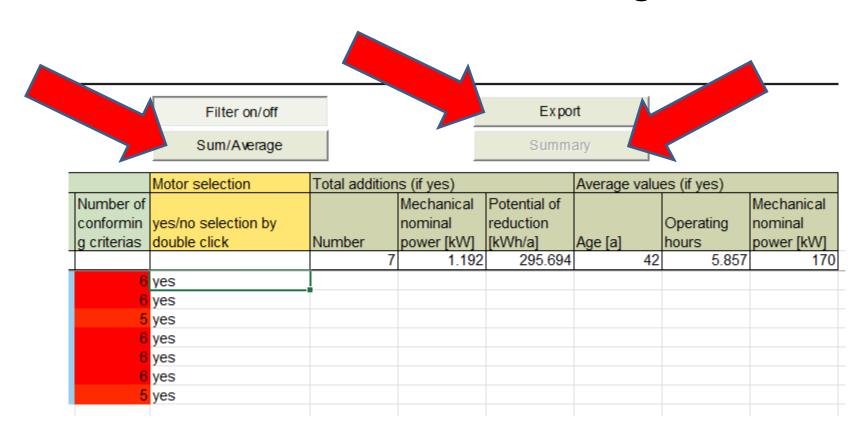

							Potential of reduction of			
Criteria		Default values	My values	Number of motor	Number of motors		energy		Potential of reduction of costs	
				absolute	in %	[kWh/a]	[kWh/LC]	[USD/a]	[USD/LC]	
(1) Rate of realisation of the maximal saving										
potential in %		50	80	7	21%	440.193	8.803.840	66.029	1.320.576	
(2) Age, older than x years		15	20	34	100%	523.620	10.164.685	78.543	1.524.703	
(3) Operating hours per year > x Stunden		3000	1800	17	50%	511.079	10.018.350	76.662	1.502.753	
(4) Dimension of motors > x kW		10	10	18	53%	514.310	10.068.291	77.147	1.510.244	
(5) Motors without FC (frequency										
converter)		yes	yes	34	100%	523.620	10.164.685	78.543	1.524.703	
(6) Application	Pump	yes	yes	12	35%	268.280	5.228.660	40.242	784.299	
	Ventilator	yes	yes	6	18%	3.776	39.144	566	5.872	
	Compressor									
	air compr.	yes	yes	10	29%	248.276	4.862.889	37.241	729.433	
	Compressor									
cold		yes	yes	4	12%	2.084	21.468	313	3.220	
	Mechanical									
	conveyor	yes	yes	2	6%	1.204	12.524	181	1.879	
	Others	yes	yes	0	0%	0	0	0	0	

Calculate	
Display	

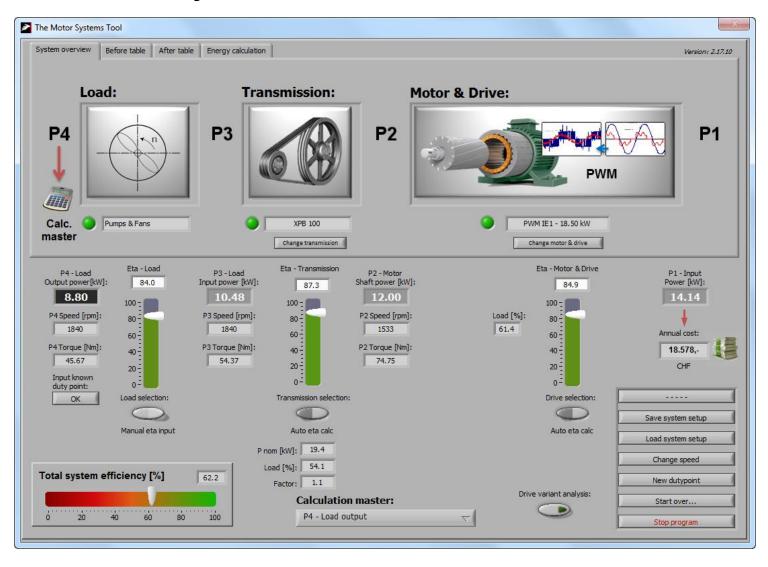
- •Goal: Identify motors for optimization
- •20% of motors save 80% of the efficiency potential



Decision Maker: fulfilled criteria


Decision Maker: Filter on/off

		Result deci	ision maker	Motor selection	Tota					
		Maximal						Number of		
	Potential of	saving		Operating	Dimension	Motors	Appli-	conformin	yes/no selection by	
	reduction	potential	Age	hours	of motors	without FC	cations	g criterias	double click	Num
	[USD/LC]									
)	137.000							6	yes	Ī
)	113.907							6	yes	
)	5.746							5	yes	
)	329.490							6	yes	
)	137.000							6	yes	
)	136.688							6	yes	
)	21.510							5	yes	



Decision Maker: Sum/Average

Motor Systems Tool

Motor Systems Tool

The Motor Systems Tool

Version 4.20.02 (September 2021)

The Motor Systems Tool is an independent calculator for complete motor systems that utilizes impartial models of standardized components, to determine the efficiency at any given duty point on a complete motor system. It is intended for engineers, machine builders, energy consultants and others interested in motor systems optimization.

It consists of a full motor system from power supply to application. From one known duty point all partials are calculated as well as the total system efficiency. Any change in speed, load or components is calculated dynamically and results are presented instantly.

The Motor Systems Tool is developed continuously. The Motor Systems Tool is developed on a LabVIEW platform and runs on Microsoft Windows. The latest version can be downloaded here:

International Standards

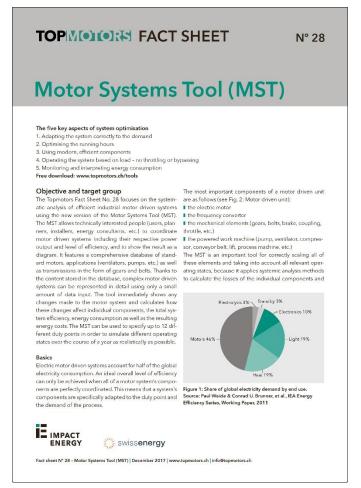
Testing

Digitalization

EMSA Tools

Technology & Capacity Building

- WEBINAR ON HOW TO USE THE MOTOR SYSTEMS TOOL
- **O** WEBINAR SLIDES
- MOTOR SYSTEMS TOOL, EXAMPLE 1
- MOTOR SYSTEMS TOOL, EXAMPLE 2
- MOTOR SYSTEMS TOOL, SOLUTION EXAMPLE 2
- **𝚱** MOTOR SYSTEMS TOOL QUICKGUIDE


DOWNLOAD V 4.20.02

Free download:

www.iea-4e.org/emsa/our-work/emsa-tools/

Topmotors Fact Sheet

10 page «guided example»

Free download: www.topmotors.ch/en/content/fact-sheets

Thanks for your attention

Contact

- Rolf Tieben rolf.tieben@impact-energy.ch
- www.topmotors.ch
- www.motorsummit.ch
- www.motorsystems.org
- Tools: www.topmotors.ch/en/tools

Gessnerallee 38a 8001 Zurich Switzerland +41 (0)44 226 20 10 www.impact-energy.ch www.topmotors.ch