

Efficient Electric Motor Systems

Overview of motor system energy efficiency improvement

SAARC Energy Center (online)

Conrad U. Brunner
Energy Efficiency Advisor
Zurich Switzerland

Global electricity end-use

Global end-use electricity: IEA WEO 2016

Electric Motor Systems

Electric motors drive:

- pumps
- fans
- air- and cooling-compressors
- transport systems
- handling & process systems
- others

- 53% of global electricity use
- Industry: share 60-70%

Source: IEA World Energy Outlook 2016 10'800 TWh/a (2016)

System standards - energy efficiency

Source: IEC 60034-31

Motor Efficiency

6

Minimum Requirements for Motors

Efficiency Levels	Efficiency Classes	Testing Standard	Performance Standard	
3-phase induction motors	IEC 60034-30-1, 2014	IEC 60034-2-1, 2014	Mandatory MEPS ^{III} National Policy Requirement	
(Low Voltage < 1000 V)	Global classes IE-Code	incl. stray load losses		
Super Premium Efficiency	IE4	Preferred Method "	EU 27 d), UK	75 - 200 kW
		<u>-</u>		<u> </u>
Premium Efficiency	IE3		Canada	0.75 - 375 kW
	W. C.		Mexico	0.75 - 375 kW
			USA	0.75 - 375 kW
			USA, Canada a)	0.18 - 2.2 kW
			South Korea	0.75 - 375 kW
		-	EU 27 d), UK	0.75 - 1.000 kW
			Switzerland **	0.75 - 375 kW
			Japan	0.75 - 375 kW
			China c)	0.12 - 1.000 kW
			Israel	7.5 - 375 kW
			Singapore	0.75 - 375 kW
			Taiwan	0.75 - 375 kW
			Brazil	0.12 - 370 kW
			Ukraine b)	0.75 - 375 kW
			Egypt f)	0.75 - 375 kVV
		Summation of losses	Turkey	0.75 - 375 kW
		with load test:	Saudi Arabia	0.75 - 375 kW
High Efficiency	IE2	Additional losses P _{II}	Australia	0.73 - 185 kW
	225.00	determined	EU 27 d), UK	0.12 - 0.75 kW
		from residual loss	Chile	0.75 - 7.5 kW
		Holli Tesiduai Toss	China c)	0.75 - 375 kW
			Peru	0.75 - 375 kW
			Colombia e)	7.5 - 375 kW
			New Zealand	0.73 - 185 kW
			Israel	0.75 - 5.5 kW
			EAEU g)	0.75 - 375 kVV
			India	0.12 - 1000 kW
			Ecuador	0.746 to 373 kW
Standard Efficiency	IE1		Peru	0.75 - 375 kW
	10000		Kenya	
			Argentina	0.75 - 30 kW

6 December 2021 SAARC Source: 4E EMSA 2021 7

Efficiency for industrial motor systems:

- Design for necessary demand: pressure and flow, capacity, temperature, etc.
- 2. Downsize all components to actual demand.
- 3. Use motor only when necessary.
- 4. Load control is imperative for changing load applications.
- 5. Go to direct-drive wherever possible.
- 6. Use digital monitoring and remote control.

6 December 2021 SAARC SAARC

VARIABLE FREQUENCY CONVERTER

Danfoss VFC with screw compressor

14

Digital motor systems

- Condition monitoring
- Remote control (www)
- Load control
- Digital Twin

MACHINE MONITORING

ACHINE MONITORING

WWW.ptc.com

system failure
performance check
energy savings
system optimisation

Digital sensors for motor monitoring

Sensors record temperature, vibrations, operating time, maybe also speed, torque

WEG ABB Siemens

THE #1 CASE the outset

- any 0.1....1000 kW nominal output machine
- could be a pump, a fan, a compressor, anything that rotates
- the machine at the outset: oversized, with fixed speed, with gear and V-belt, current market components
- the system improved: downsized, with adjustable speed, direct drive, efficient components, remote control

The efficient motor systems means:

- 1. Supply mets demand: no more oversizing
- 2. Time of use: run only when needed (night, weekend)
- No standby losses
- Motor connects to pump/fan directly:
 no gear and belt necessary ► direct drive
- 5. Load control is necessary: variable frequency drive
- 6. Use high efficient components:
 - motors: IE4
 - VFD: IE2 or IE3 (variable frequency drive)
 - BAT for pumps and fans (best available technology)
- 7. Remote control is next

Repaired vs. New Motor

Repaired motor (after 50'000 h)

- motor dismantling, rewind, assembly: takes days or weeks
- efficiency decreased with rewind
- repair cost below 10 kW is higher
- same size,
- same type motor: fixed speed
- runs hot
- more greasing
- more maintenance
- risk of failure
- ► A repaired motor is never a new motor

New motor (after 10 years)

- plan ahead for delivery of new motor: installation takes days
- efficiency increased with IE3 / IE4
- cost of new motor above 10 kW is cheaper
- resizing/downsizing is possible,
- better motor type possible: poles, heat
- runs cooler
- less greasing necessary
- less maintenance, no failure
- use of variable frequency possible
- Recycling of old motor is easy

Thank you, questions?

Conrad U. Brunner

Member IEC ACEE, IEC & ISO JAG 22;
ISO TC 115 Pumps and ISO 117 Fans

cub@cub.ch
8032 Zurich Switzerland

4E EMSA: Electric Motor Systems Annex www.motorsystems.org www.topmotors.ch