

Pump System Energy Efficiency and Smart Pump Demonstrator

Hu Bo, Top10 7 December 2021

Profile

Researcher

- Motor system energy efficiency
- Appliance energy efficiency standards and labels
- Cooling efficiency
- Industrial IoT standardization

Programmer

- Embedded device and system
- IoT cloud OPC UA server
- Web application
- Web crawling

Coordinator

- International cooperation
- Technology transfer

Table of content

- Motor system efficiency is the key approach
- Training is the most cost-benefit method
- Smart pump demonstrator from Switzerland to China
- Smart pump demonstrator platform
- Pump system efficiency cases
- Innovative international cooperation pattern

Fluid systems consume major industrial electricity

- Key motor systems in industries
 - Pump systems
 - Fan systems
 - Air compressor system
- It is not only a problem for motor, but also for fluid systems.

*China industrial motor system energy consumption

System efficiency and saving are the key factor

- System efficiency is the multiplicative results of all component efficiency
- The lowest efficiency component decides the whole system efficiency: Barrel effect
- Replacing high efficient motor has limited improvement of system efficiency

IEC motor efficiency classification

Motor system optimization can gain the biggest saving potential

Total Motor System with transmission, gears and motor Core Motor System Large savings **Electric Motor** Good savings Small savings Motor + Pump +ASD Grid Entire heating system with pipes, pump and motor, ASD Source: A+B International, 2008.

Considerable energy saving can be achieved by low or even no cost!!!

Effective training is the key factor of success

Swiss Pump Demonstrator

Pump Demonstrator China Version

- I big pump and 4 small pumps to simulate operation load
- Operable and adjustable
- Remotely controlled
- Instant data sampling
- Cloud data receive and publish service
- Web and professional client software
- Apply to other industrial devices and systems

Pump demonstrator 3D

Innovation: Digitalization and standardization

Smart sensors and meters Graphical, dynamical clients Data **OPC Cloud Server** gateway OPC UA Protocol Flow Pressure Power

Global accessible web portal

https://pd.scinergyiot.com:7006/

Please register and experience

Web training client – virtual control panel

© 2021 - SmartPumpSystems - Privacy

Everyone has a set of digital and dynamic data display panels!!!

Remote training

Five most important points for efficient pump system

- **Design**: design the system for effective and proper application conditions (water requirement, heat requirement)
- Losses: investment on minimum energy losses layout (short lines with large cross section, no unnecessary throttles and bends of the network)
- Variable operation: adjust amount of water and pressure under ondemand control
- Frequency converter: control the speed of the driving motor (instead of throttle or step switching)
- Efficient motor: high efficient motor adapted to pump for needs and speed

Practice 1: how rotating speed affects system flow, pressure and power?

Motor rotating speed:

$$RPM = \frac{60 \times Frequency \times 2}{1}$$

Poles

Nominal rotating speed under 50 HZ

- 2 poles: 3000 RPM
- 4 poles: <u>1500</u> RPM
- 6 poles: 1000 RPM
- 8 poles: 750 RPM

Practice 1: how rotating speed affects system flow, pressure and power?

$$Q_2 = Q_1 * \left(\frac{V_1}{V_2}\right)^2$$

$$H_2 = H_1 * \left(\frac{V_1}{V_2}\right)^2$$

$$P_2 = P_1 * \left(\frac{V_1}{V_2}\right)^3$$

V: Frequency

Q: Flow

H: Pressure

P: Power

Practice 2: replacing in-efficient motor with efficient motor can save expected energy?

Replacing in-efficient motor with efficient motor can save expected energy? – not for pump system

Increase number of revolutions	Increase input and output power of pump		
1%	3%		
2%	6%		
3%	9%		
4%	12%		
5%	16%		

Practice 3: how valve control affect flow, pressure and power?

Practice 4: why VFD can save energy? - Theoretic figure

Practice 4: why VFD can save energy? -practical

Practice 4: why VFD can save energy? -practical

Practice 5: how VFD can automatic control system? - PID control

Flow Chart

Practice 6: how to combine fixed + variable speed pump systems?

Practice 7: will partial load reduce efficiency?

System base power: 290W

System power (W)	VFD Frequency (HZ)	VFD Input Power (W)	VFD Load (%)	VFD Output Power(W)	VFD Power Loss(W)	VFD Efficiency (%)
475	15	/185	2.7	75	105	40
640	20	350	6.4	140	210	40
885	25	595	12.5	215	380	36
1230	30	940	21.6	350	_590	37

Practice 8: how IoT technology can support efficiency improvement?

- Device communication protocol: analog, Modbus, I2C, etc
- Cloud communication protocol: OPC UA
- System status monitoring
- System remote control
- System data persistent and storage
- System data analysis and optimization plan
- Energy efficiency AI or expert system

Swiss Pump Demonstrator

International cooperation pattern

Thank You!

Hu Bo

Director of Top10

hu.bo@top10.cn