10TH DECEMBER 2021

IEC Low voltage motors
VFD Applications & Motor Technologies
Lokesh B M, R&D Hub Manager, LV Motors, India
Contents

• Motor performance characteristics

• Why VFD duty motor?

• Check list for VSD duty motors

• Type of loads

• Loadablity Curves for VFD duty motor

• VSD Efficiency & savings

• Problems to prevent when using VSD

• Pay special attention

• Learnings

• Energy Efficiency

• Case Studies
Motor performance characteristics

A – Locked rotor torque (starting torque)
B – Pull-up torque
C – Breakdown torque
D – Full load torque
E – Synchronous speed
Selection criteria for Induction motors for VFD applications

Converter Drive – Why?

If we want to change the motor speed it can be done using Frequency Converters

The main reasons are:
Changing the speed to meet process demand or energy savings.

However other advantages are:

- Reducing equipment in the system
- To get a “Soft Start” & lower starting current
- Long service life for mechanical components
- Best quality of the finished products due to precise control
- Increases the efficiency of overall process & system
Basic Principle

<table>
<thead>
<tr>
<th>Dimensioning phase</th>
<th>Network</th>
<th>Converter</th>
<th>Motor</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Check the initial conditions of the network and load:
 - $f_n=50\text{Hz}, 60\text{Hz}$
 - $U_n=380\ldots690\text{V}$

2. Choose a motor according to:
 - Thermal loadability
 - Speed range
 - Maximum needed torque

3. Choose a frequency converter according to:
 - Load type
 - Continuous and maximum current
 - Network conditions
Motors suitable for VFD

Check List, Squirrel Cage Motor & VSD

Check list for selection of motors

<table>
<thead>
<tr>
<th>At low speeds</th>
<th>Cooling</th>
<th>Critical Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>At high speeds</td>
<td>Maximum Torque</td>
<td>Bearing Construction and lubrication</td>
</tr>
<tr>
<td></td>
<td>Fan noise and mechanical suitability</td>
<td>Critical Speeds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Always</th>
<th>Load Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winding Insulation level (dv/dt)</td>
</tr>
<tr>
<td></td>
<td>Bearing Insulation</td>
</tr>
</tbody>
</table>

ABB Offerings

- Peak voltages
- \(\frac{dv}{dt} \), Rise time
- Bearing circulating currents
- Overheating due to harmonics
Load types

1. Quadratic torque
 - Centrifugal pumps
 - Fans

2. Constant torque
 - Conveyors
 - Feeders, screws
 - Compressors

3. Constant power
 - Rollers

4. Constant power/torque
 - Paper machine rolls
Applications

Squared/quadratic torque
- Centrifugal pumps, fans and mixers
 - Maximum speed is set to be nearer to base speed
 - Self ventilation

Constant torque
- Conveyor, roller tables, elevators, crane drives
 - feeders, screws, compressors, extruders, cement kiln
 - Minimum & maximum speed points are set as high as possible in motor loadability curve
 - Self/separate ventilation
 - Mechanical gear consideration
 - Check overloadability
Applications

Constant Power

Winders, coilers, rollers

- Speed range is set to field weakening area
- Self ventilation
- Check overloadability
Applications

Constant Torque, constant power Applications

Example: Applications include Rolling mill, Bridle motor
VSD Energy savings

• Traditional pump system is usually controlled by mechanical throttling & dimensioned according to maximum flow requirement

• In Quadratic loads, power demand increases cube times the speed and torque demand increases square times the speed
 • The average needed flow will be much lower.
 • A converter drive follows the pumping system requirements and cause no additional pressure loss at pump or valve

Savings from 30% to 70% energy compared with throttling
The affinity laws for pumps & fans describe the relationship between their performance variables. The pump/fan flow (what customer needs) is proportional to the speed, but the power is proportional to the cube (x^3) of the shaft speed!

- This means that a pump running at 80% of its nominal speed will produce 80% of its nominal flow, requiring only 50% of the nominal power => 50% less ENERGY needed!

- In reality most pumps and motors are oversized and/or designed for extreme conditions. But if you switch on the motor/pump it will run at full speed, so how does the customer control the needed normal flow?

Most used solutions:

- Throttling (closing valve)
- Bypassing
- On/Off — control (1, 2, x pumps)
How do these “control solutions” compare if the needed flow is for example 70% of the installed nominal capacity? How much Power or Energy is consumed to produce that flow?

Throttling (closing valve)

89%

Bypassing

82%

On/Off control (1, 2, x pumps)

70%

Variable Speed Control

45%

NOTE: High Efficiency Motors can also save the customer Energy and reduce his carbon footprint.
The underappreciated role of drives

- Upgrading a motor offers significant efficiency gains. But still **greater energy savings** are achievable when it is used in combination with a variable-speed drive (VSD).

- A **VSD adjusts the speed and torque** of a motor to match the system’s load requirements.
Problems to prevent, when using VSD

Winding insulation
To ensure that motors operate reliably, the effects of non-sinusoidal output voltages from the converter must be taken into consideration when selecting the correct insulation system for the motor and output filters for the converter. The insulation and filters must be selected according to below table.

VPI and dual coat copper: To protect windings from corona discharge during conversion from ac to dc in the drive and voltage stresses.

Winding insulation and filters required

<table>
<thead>
<tr>
<th>Voltage Condition</th>
<th>Insulation Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un ≤ 500V</td>
<td>Standard insulation</td>
</tr>
<tr>
<td>Un ≤ 600V</td>
<td>Standard insulation + dU/dt filters OR Special insulation</td>
</tr>
<tr>
<td>Un ≤ 690V</td>
<td>Special insulation AND dU/dt-filters at converter output</td>
</tr>
<tr>
<td>600V < Un ≤ 690V cable length > 150m</td>
<td>Special insulation</td>
</tr>
</tbody>
</table>
Problems to prevent, when using VSD

Bearing currents
Bearing voltages and currents must be avoided in all motors to ensure reliable operation of the entire application.

Table gives the selection rules depending on motor output power and frame size when used together with ABB converters; the same rules can also be applied as guidance when using ABB process performance motors with other converters.

<table>
<thead>
<tr>
<th>Nominal Power (Pn and/or frame size)</th>
<th>Recommended measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn < 100kW</td>
<td>No action needed</td>
</tr>
<tr>
<td>Pn ≥ 100kW OR IEC 315 ≤ frame size ≤ IEC 355</td>
<td>Insulated non-drive end bearing</td>
</tr>
<tr>
<td>Pn ≥ 350kW OR IEC 400 ≤ frame size ≤ IEC 500</td>
<td>Insulated non-drive end bearing AND common mode filter at the converter</td>
</tr>
</tbody>
</table>
Problems to prevent, when using VSD

Electromagnetic compatibility (EMC)

The high-frequency components in a variable-speed drive might cause electromagnetic interference with other equipment in the installation.

To avoid this, certain measures should be taken. To meet EMC requirements, special EMC cables glands with a 360° connection to the concentric protective earth conductor should be used.

EMC is the ability of an electrical/electronic equipment to operate without problems within an electromagnetic environment. Equipment must not disturb or interfere with any other product or system within its locality.

Technical solutions in EMC
Connection of motor cable shielding to a motor terminal box
Two possibilities (variant code 704)
EMC cable gland
EMC cable box
Problems to prevent, when using VSD

Common mode filters: Common mode filters are installed at the output of the frequency converter.
- Filters are made of toroidal cores installed around motor cables
- These filters reduce common mode currents and so decrease the risk of bearing currents.
- Common mode filters do not significantly affect the phase of main voltages on motor terminals.

dU/dt filter: Series reactor.
- Decreases the changing rate of the phase and main voltages and thus reduces voltage stresses in the windings.
- Decrease so called common mode currents and risk of bearing currents
- Designed so that du/dt-rate of main voltages at motor terminals is approx. 1kV/μs.

Note: According to IEC, for Ex nA-applications dU/dt-rate 500 V/μs or less is required. Refer IEC 60079-15,
Pay special attention!

1. Select motor according the correct load type

2. Use correct minimum speed for constant torque drive

3. Remember that force ventilation selection is sometimes more optimized than self ventilation.

4. Limit temperature rise to Class-B, Use Class-F rise based on customer requirements.

5. Define overload speed range correctly

6. Inverter dimension should be based on duty cycle & motor current with drive.

7. Remember that voltage dips affect to motor breakdown torque

8. Type of cable and cable length.
Learnings

VFD’s improve productivity & offer excellent energy saving opportunities. however, the motor reliability must
be ensured through proper selection.

Below are the five questions to be addressed while offering a VFD duty motor:

1) What is the application?

2) How is the load demand Curve?

3) What is the speed range & overload cycle?

4) Type of VFD?

5) Whether motor starts with DOL as well?
What we care for
How we can help use energy more efficiently

Electricity needs keep rising globally
A lot of this electricity is used to power industrial electric motors

- >40% of all electricity used in power industry
- 2/3 of this is used by electric motors
- ~30% of global electricity consumption

Guaranteed energy efficiency
Energy efficiency measures can reduce consumption by up to 60%

- ABB LV motors fulfill all mandatory national regulations
- ABB offers LV motor and variable speed drive packages

Save energy and optimize operations in a sustainable way
Fulfilling all international and national efficiency regulations

- Energy Efficiency Act, EE Regulations 2016, Canada
- DOE 10 CFR Part 431 (Integral Horsepower Motor Rule), US
- NOM-016-ENER-2016, Mexico
- PRTE-145, Equador
- RTEE, Peru
- Chile
- IRAM 62405, Argentina
- Portaria interministerial No 553, Brazil
- Regulation EC No 640/2009
- Greenhouse and Energy Minimum Standards Act, Australia
- Energy efficiency and Conservation Authority New Zealand
- SASO/IEC 60034-30, Saudi-Arabia
- GB18613-2012, China
- Decree No. 21/2011/ND-CP, Vietnam
- CNS 14400, Taiwan
- MKE-2015-28, South-Korea
- IRAM 62405, Argentina
- Singapore
- Indonesia
- BIS IS 12615, India
- JIS 4213, Japan
- GB18613-2012, China
- JIS 4213, Japan

https://new.abb.com/motors-generators/energy-efficiency
Motors are at the forefront of global efforts to improve efficiency and reduce emissions.

Motor efficiency is rated according to a scale published by the International Electrotechnical Commission (IEC).

Even as the world seeks to increase energy efficiency in general, new applications have emerged that place a premium on efficient motor designs.

<table>
<thead>
<tr>
<th>Energy Efficiency Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The IE5 class has not been specified in the standard yet, but some manufacturers have already developed motors that will be compliant</td>
</tr>
<tr>
<td>IE1</td>
</tr>
<tr>
<td>IE2</td>
</tr>
<tr>
<td>IE3</td>
</tr>
<tr>
<td>IE4</td>
</tr>
<tr>
<td>IE5¹</td>
</tr>
</tbody>
</table>

1. IE2 minimum standard in India
2. IE3 minimum standard in Europe
3. From 2023, IE4 will be the minimum standard in Europe for motors between 75-200kW
A positive effect on lifecycle cost

Four steps to added value

- High permeability steel – Reduce magnetic losses
- Increased amount of copper – Reduced copper losses
- Improved manufacturing techniques – Reduced heat and stress
- Reduced Iron, Rotor, Stator and copper losses
- Reduced windage and friction losses
- Improved airflow
- Improved fan/cowl and bearing designs
- Improved balancing
- Improved bearings housing design
- Use of quality bearing / grease

Motor runs cooler

Temp rise

IE

Motor runs quieter

Noise

Quality

Reduced stress

Life cycle costs value

12 December 2021
Advanced Motor Technologies to Reach IE5

PM motor
- High energy efficiency
- Highest power density
- Accurate speed control even without sensors
- Low bearing temperatures and longer bearing lifetime
- High cost
- Only for VSD operation
- Rare-earth magnets
 - Uncertain cost variation
 - Demagnetization risk
 - More difficult service due to forces from magnets

SynRM
- High energy efficiency
- High power density
- Accurate speed control even without sensors
- Low bearing temperatures and longer bearing lifetime
- Easy to use and maintain.
- Designed exclusively for variable speed operation
- Package efficiency verified by ABB

Ferrite Assisted SynRM Motor
- High Energy Efficiency: IE5+
- Requires Variable Speed Drive
- Excellent Power Density
- Accurate speed control even without sensors
- Low bearing/winding temperatures
- Efficiency at low speeds
- Tailored design performance
- Uses Ferrite magnet (instead of rare earth magnet)
Two new innovative motor and drive packages

The High Output SynRM package
- Powerful, yet highly compact motor with up to two frame sizes smaller than conventional induction motor without compromising efficiency
- Lighter and smaller motors enable cost effective machine designs

The IE5 Ultra Premium Efficiency SynRM package
- Energy losses reduced by up to 40% compared to IE3 efficiency class
- Interchangeable with IE3 induction motor without costly mechanical modifications

Both packages are based on perfectly controlled synchronous motor technology without permanent magnets materials. Optimized for VSD operation, they combine motor, drive and advanced software into complete solutions.
Key to success
Elimination of rotor losses

IE3 Induction motor

100%
I^2R Rotor
Other
I^2R Stator

Losses

IE5 SynRM motor

60%
I^2R Other
I^2R Stator

80–90%
Other
I^2R Stator

High output SynRM motor
New revolutionary motor and drive package

- Magnet free design combining advantages of permanent magnet technology with simplicity and service-friendliness of an induction motor.

- Packages available for quadratic torque applications such as pumps and fans.

- Competitive product offering compared to traditional or other new technologies.

- Higher reliability through lower bearing temperature.

- Designed exclusively for variable speed operation.

- Advanced open loop control software.

- Package efficiency verified by ABB.

- Global ABB support.
Setting the stage to compare the different motor technologies

Today it is challenging to compare full efficiency performance of different motors

– Motor losses in partial load conditions are not available easily in VSD duty today

Regulation EU 2019/1781 (Ecodesign directive)
Manufacturers need to provide the losses at these points for the motor (1.7.2022) and drive (1.7.2021)
This enables comparison of different motors in partial load conditions with VSD (variable speed drive) duty.

IEC TS 60034-30-2 defines IE (International Efficiency) classes of variable speed AC (alternating current) motors
The new standard allows comparison of different motors in the IE class level, regardless of which standard is used for IE classification

This is the first time the IE5 class has been officially defined.

IEC 60034-2-3
Points (3), (2) and (1) are mostly relevant for constant torque applications (conveyor belts, lifts, hoist drives) at full load and test points (5) and (4) are relevant at half load.
Points (7), (6), (5), (4) and (1) are mostly relevant for quadratic torque applications like fans, pumps and compressors
IE5 SynRM versus IE3 induction motors in VSD duty

Behavior based on ABB measurements

ABB laboratory measurements confirm SynRM efficiency advantage also at partial load conditions.

There is about a 2% of benefit at full load, while at partial load the benefit can be as much as 6-7%.

The relative saving of SynRM IE5 motor is higher at partial load conditions.
IE5 SynRM motor + drive package vs IE3 package

Practical example

IE5
- 110 kW motor
- 1 year
- Energy consumption of 8760h
- Average 75% power

IE3
- Standard package efficiency 94.2%
- Energy consumed 788 MWh
- CO₂ produced 330 t

Incremental investment with an estimated ROI ~1 year

IE3
- Standard package efficiency 92.5%
- Energy consumed 802 MWh
- CO₂ produced 338 t

~ 2% ~ 2% ~ 2%

The CO₂ reduction of a 110kW IE5 motor in a year is equivalent to taking 5 petrol-fueled cars off the roads.
How much does it cost to own a product over its expected lifetime? A cheaper motor is not always the best buy:

- A motor, irrespective of its rating, will consume its purchase price in energy costs during its first month of continuous operation.

- Downtime at a major plant might cost $1 million per day

- Reliable, high efficiency motors deliver the lowest life cycle costs. Advanced diagnosis tools preserve and enhance equipment reliability and minimize unplanned system downtime.
Shri Mahabir Ferro Alloys,
Manufacturer of metal products

- **Customer**: Shri Mahabir Ferro Alloys (P) Ltd. Rourkela

- **ABB offering**: IE4 Motors (184 nos.) for applications like fans, compressors, pumps, conveyors, blowers, gear-boxes in Pellet Plant, Direct Reduced Iron Plant and Captive Power Plant

- **Benefit**: Annual energy savings of ~250 MWh achieved using 68 motors. Further potential to save ~550 MWh annually when balance 116 motors replace the existing old motors

 Overall savings equivalent to average annual energy consumption of an Indian village
Alufluoride Ltd.,
a leading Chemical company

- **Customer**: Alufloride Ltd., Visakhapatnam, **OEM**: D. Parikh Engineering Works

- **ABB offering**: 200kW AC regenerative Drive for Chemical and Pharma Centrifuge. Regenerative drive feeds back the braking energy to the grid saving additional energy

- **Benefit**: Energy savings and better power quality improves reliability and availability. Annual savings of 66MWh, equivalent to INR 4 Lakhs savings per machine with ROI ~3 years
Evides Waterbedrijf, pumping station to supply fresh water

- **Customer**: Evides Waterbedrijf built a new pumping station to supply fresh water to their customers. Because their success is based on a philosophy of sustainability, they decided to pioneer the first use of ABB’s low-energy SynRM synchronous reluctance motor and variable frequency drive (VFD) technology in the Netherlands.

- **Benefit**: Evides water company was the first in the Netherlands who put the SynRM technology into their system and it worked very well for us. The new motors are much cooler, meaning heat and energy losses are lower. In addition, the noise levels are much reduced as well. We calculated that the energy savings must be about 20%.” says Joost van Belzen, Project Engineer and Toine Rijsdijk, Process Automation Engineer, at Evides.

- The delivery included ACS880 industrial drives and SynRM motor package.
Orchid Laminates, Bangalore, a leading manufacturer of coated paper boards and laminate sheets

- **Customer**: Orchid Laminates Pvt. Ltd.
 Sys. Integrator: Rcube Electric

- **ABB offering**: Promoting energy efficiency concepts by collaborating with end-user. Integrated solution with 55kW Synchronous reluctance motor (SynRM) and drive for improved energy efficiency beyond IE4

- **Benefit**: Energy saving of approx. **13%** compared to conventional running with additional improvements in process and reliability
JW Marriott, Pune,
a landmark hotel in the city of Pune

- **Customer:** JW Marriot hotel, Pune

- **ABB offering:** 2 nos. 15.5 kW 350 rpm Cooling Tower Direct Drive (CTDD) for air handling unit application

- **Benefit:** ABB’s Cooling Tower Direct Drive (CTDD) and motor improved energy efficiency by 35%, reduced maintenance costs while delivering quieter operation as compared to the conventional Motor-Gearbox systems

Energy saved in a day with this solution can charge an EV car to run for ~ 1500 Kms
Motors for Pharma Industry

- **Customer:** EU-ACG FILMS & FOILS

- **ABB offering:** 1 # 5.5 kw 4p IE5-ECT Motors
 Application: Centrifugal Pump

- **Benefit:** Energy conservation with IE5-ECT motors
 12.59 KWH saved over IE3 motor