

"Assessment of the Present Situation and Gaps in Capacity, Technology and Policy & Regulatory Instruments in Coal Sector of SAARC Member States"

Author: Prof. Dr. Shahid Munir Dr. M. Usman Rahim Dr. Rizwan Haider Centre for Coal Technology, University of Punjab, Lahore, Pakistan. Email: director.cct@pu.edu.pk

Reviewer: Engr. Nazrul Islam Former Managing Director Infrastructure Investment Facilitation Company (IIFC), E-mail:epnz2009@gmail.com

Coordinator: Engr. S.M.Mohibur Rahman Research Fellow (Technology Transfer) SAARC Energy centre, Islamabad, Pakistan. E-mail:rftt@saarcenergy.org, mohib9@gmail.com

Published by: SAARC Energy Centre House # 697, Street # 43 Sector # E11/4, NPF, Islamabad, Pakistan. Tel: +92 51 2228804, Fax: +92 51222 1937 E-mail:info@saarcenergy.org www:saarcenergy.org

Year of Publication: December, 2017

Foreword

The foreseeable extensive use of Coal warranted a detailed study which could highlight the potential of coal in SAARC Member States in terms of encompassing gaps in capacity, technology and policy & regulatory Instruments. As a matter of fact, coal significantly contributed towards the socio-economic progress of United States, Australia and China. Today's developed nations not only relished *coal-based economy* but are also developing clean coal and coal conversion technologies. However, in SAARC Member States, coal could not become a major energy component in past except in India where coal has a long history of utilization and industrial application.

With time, there emerged a need to develop and formulate a set of guidelines for the Member States that could help in revising their energy policies and ensuring the justified role of coal in a diversified energy mix. However, this was only possible by assessing the actual resource potential, identifying the environmentally-compatible technology forefronts, directions to develop human resource potential and infrastructure, comparative analysis of existing and future energy policies, particularly with reference to coal and pinpointing the pathways for achieving coal-based regional collaboration. Additionally, this assessment study could, possibly, lay the foundations of a mechanism for achieving regional integration and energy sustainability.

Precisely, the report addresses status of coal reserves, utilization patterns, issues related to coal mining, coal supply chain management, coal-based power generation technologies, environmental effects, need of human resource potential, status of coal in foreseeable future around the globe, regulatory frameworks, and need of regional policy framework. However, the biggest challenge was assembling a set of formulations by gathering all this scattered information into one piece. Much of the information, presented in this report was scattered and lacked intra-regional cooperation on the subject, thus necessitating the preparation of an updated document. No doubt, there must have been some components that could have been included in the report, but at this point of time, this work can be propagated for achieving the true purpose of this assessment.

December'2017

Mohammad Naeem Malik Director

Acknowledgment

The authors are grateful to SAARC Energy Centre (SEC), Islamabad for providing us the opportunity to work on this assessment report, which happened to be need of the hour. Without the cooperation and assistance from SEC, finalizing this report would have not been possible. The authors would like to especially thank the reviewer, Mr. Engr. Nazrul Islam from Bangladesh, for such detailed comments upon review, which made this document purposeful and increased its objectivity. The authors would also like to extend their gratitude to Engr. S.M. Mohibur Rahman for coordinating through back and forth emails and correspondence, which was surely hectic but fruitful.

Author(s)

Executive Summary

According to *Copenhagen Accord (2009)*, the biggest challenge for the developing countries is poverty alleviation while addressing the rising challenge of climate change, equally. Industrial growth and energy security & sustainability drive Socio-economic development of any country. In SAARC region, unfortunately, not a single member country has been able to provide electricity to all households. According to *Electricity Access in 2009 (World Energy Outlook 2011, IEA)*, 68.5% of the total population in developing Asian countries has access to electricity, more precisely, 15.5% of Afghanistan, 41% of Bangladesh, 75% for India, 43.6% of Nepal, 62.4% of Pakistan, and 76.6% of Sri Lanka. As a whole, 493.4 million population is living without access to electricity in SAARC region.

Fossil fuels will remain the key source of primary energy as renewables are not yet a competitive replacement. Among fossil fuels, coal can be associated with a number of key attributes including abundance, accessibility, energy security, reliability, affordability and versatility, as a result of which coal would be continuing to play an important role in meeting global energy demands for more than 100 years. Currently, as per estimates of 2014, 40.8% of electricity is being supplied from coal based power generation (Key World Energy Statistics, 2016), thus being the largest single source for electricity generation. Additionally, considering the prospective role of coal in meeting energy demands, it has been estimated that an additional 3800 TWh of electricity will be generated through coal by 2035, which indicates 44% increase (The Global Value of Coal, 2012). The pivotal role of coal in industrial revolution has set an example of rapid societal progress of China, which can be evidenced as, "Coal has underpinned China's massive and unprecedented growth in output, fueling an economic miracle that has helped to improve the standard of living" (Cleaner Coal in China, IEA 2009).

In SAARC region, most of the countries possess coal reserves and yet a large amount of reserves is untapped. Pakistan has 175 billion tonnes of untapped lignite reserves at Thar, which presents a unique opportunity for uplifting regional economy. As of now, only six blocks have been awarded to private companies for development. However, there is a need to expedite the development of Thar coal by allocating more blocks for mining and power generation purposes. Pakistan should also shift its dependence from imported coal to Thar coal reserves that can be used in various energy recovery schemes including power generation. Bangladesh and Afghanistan have 3.3 billion tonnes and 66 million tonnes, respectively, which are largely unexploited. The tapping of these reserves may provide an opportunity for economic uplifting of the region through the generation of direct and indirect employment opportunities.

Mining practices in all SAARC region except India are obsolete, manual and labour intensive. These practices need to be mechanized for meeting increasing coal demands of the region. Coal India Limited (CIL), the largest coal producing company in the region, has not been able to ensure anticipated domestic coal production, thus requiring the import of 166.557 million tonnes of coal for the year 2013-14 (Coal Directory of India, 2013-14). The major reason for this inefficient productivity is the limited involvement of private sector in coal mining. Similarly, Pakistan's annual coal production is 3.4 million tonnes that is much below than its future plans for coal power generation through China-Pakistan Economic Corridor (CPEC). Mining practices are at the same stage where Britain left the country and obsoleted. Mining is the major bottleneck in the utilization of indigenous coal. Pakistan needs to develop its mining infrastructure along with supply chain. As a matter of policy, private investment in coal mining sector must be encouraged and facilitated through tax relaxation schemes, so that targeted coal productivity can be ensured. Alongside, legislations should be introduced across the region for improving residential, health and safety standards of miners in accordance with the international standards. Coal towns can be developed for the facilitation of mining workers in the vicinity of coal producing areas.

In addition to the development of coal mining industry, there is a dire need to improve coal supply chain infrastructure, as well. Rail networks need to be developed in SAARC countries, other than India, for the transportation of coal. The improvement in supply chain infrastructure will not only increase the availability and accessibility of coal but also boost transportation industry, creating numerous employment opportunities. Coal washing and upgradation facilities must be installed at mine

iv

mouths so that the transportation cost of coal can be reduced in addition to the improvement of coal quality.

In SAARC region, power generation is the major use of coal, which will increase in near future owing to upcoming coal fired power projects in India, Pakistan and Bangladesh. Though, power generation will remain the predominant use of coal, however, other uses of coal also need to be explored, for instance, role of coal as chemical feedstock, use of coal in fertilizer production and provision of alternative fuel options through gasification. India has traditional low efficient and high emission producing coal power plants, which need to be upgraded with modern clean coal technologies. Within the region, India happens to be the largest contributor to coalbased pollutant emissions, as coal-based power generation capacity of India is 186,493 MW (as of October, 2016) and 90% of India's coal fired power generation plants are based on subcritical technology. As per Ministry of Environment, Forest and Climate Change (India), for existing coal fired power plants, the emission standards for particulate matter, SO_x and NO_x are in the ranges of 150 to 350 mg/Nm³, 200 to 600mg/Nm³ and 300 to 600mg/Nm³, respectively. Though, for new coal based power plants, emission standards have been revised but still those are not comparable to the standards of USA and European Union (EU).

This scenario not only necessitates the immediate upgradation of India's existing coal fired power plants but also requires future installation of supercritical based technology or higher in India. Another allied aspect is the regional synchronization of environmental standards for, effectively, controlling emissions of pollutants from coal based power generation. Now, time has come for taking the initiative of establishing SAARC Environment Control Standards at regional level in order to ensure the improvement in existing standards in the light of those, which are being practiced in European Union and USA. Moreover, in conjunction with increased use of coal, carbon capture and storage technologies would have to be integral component for coal based power generation in order to mitigate carbon dioxide emissions. Investments to achieve this objective can be pursued from Green Climate Fund (UNFCCC, 2010). Carbon trading credits schemes can be launched in SAARC countries. India contributes to 98% coal originated CO₂ emissions in the region. Since high-efficient and low-emission (HELE) technologies, such as Integrated Gasification Combined

Cycle (IGCC) require large initial capital cost, the role of private investors can be expedited. A number of incentives like tax relaxations etc. can be offered for attracting investors for the development of coal sector from coal mining to utilization.

Considering the potential of coal in SAARC region, there is also a need to establish SAARC Coal Centre, which, in a broader perspective, could provide a platform for promoting the efficient coal utilization in the region. Particularly, this Centre can play role in terms of energy and resource hub for;

- Developing mechanism for technology transfer within the region from countries with developed coal sector to the countries, which need to enhance the role of coal in energy mix
- 2. Development of human resource potential with special reference to the requirements of coal industry
- 3. Advancing research & development in coal sector for exploiting the use of coal for fertilizer production and as a chemical feedstock
- 4. Reassessment and Reevaluation of Coal Resources for actual estimation of reserves in SAARC region
- 5. Organizing workshops, training, seminars and conferences for promoting cleaner use of coal

Conclusively, the probable extensive use of coal in SAARC region will require addressing environmental concerns during mining and utilization of coal. 21st Century Clean Coal technologies have the potential of addressing all environmental concerns with increased plant efficiencies and reduced per unit cost. In short, energy poverty of the region can be eradicated by adopting clean coal based industrial growth, which would definitely lead to economic growth along with meeting climate challenge with the help of 21st century clean coal technologies.

Prof. Dr. Shahid Munir

81-1

Dr. Rizwan Haider

Dr. M. Usman Rahim

Purpose of the Study

The study presents baseline situation of coal sector, asses the technology, policy & human resource capacity and put forward recommendations to promote the role of coal for sustainable development of SAARC region.

Objectives of the Study

The objectives of the study were as follows;

- 1. Assessment of the Present Scenario of Coal Sector in SAARC Member States
- 2. Identification of the Gaps in Policy Framework for Efficient Utilization of Coal Resources
- 3. Existing Practices of Extraction and Supply Chain Management of Coal Resources in SAARC Member States
- 4. Identification of Key Coal Utilization Sectors, End User Technologies and Environmental Mitigation of Coal for Each Member State
- 5. Role of Coal in Energy Security from SAARC Regional Perspective
- 6. Capacity Building and Technology Transfer Options and Opportunities

Scope of the Study

This study provides an extensive overview of coal sector in SAARC region with special reference to the current status of coal sector in the region, indication of gaps in production and demands, assessment of coal technologies in practice and, lastly, prospective role of coal in the social and economic progress of the region.

Limitations in the Study

Key limitations, faced during conducting the study, were as follows;

- 1. Present study was primarily conducted based upon published literature, however, limited data was available related to geological occurrence of coal in SAARC member states, particularly, for Afghanistan and Bangladesh posed difficulties.
- 2. In some countries of the region, coal production and consumption data might not have been well reported owing to limitations of the governing bodies. The actual production and consumption numbers might be higher than reported for Afghanistan, Nepal and Bangladesh.

Table of Contents

	Fore	Foreword i				
	Ack	Acknowledgment i				
	Executive Summary					
	Pur	pose of	the Study	vii		
	Tab	le of Co	ntents	viii		
		of Figu		xi		
		of Tabl		xiv		
		reviatio		XV		
1			al Reserves in SAARC Region: Reserves, Production & Consumption	1		
	1.1	Afghan		2		
		Bangla		3		
		Bhutar	1	5		
		India		6 1 5		
		Maldiv	es	15 15		
	1.0	Nepal Pakista	מו	15		
	1.7	Sri Lan		20		
			ition in SAARC Region: Mining Practices, Supply Chain Management			
2			er Technologies	22		
		Coal M		23		
			rocessing	26		
	2.3		ining in SAARC Region	40		
		2.3.1	Afghanistan	40		
		2.3.2	Bangladesh	44		
		2.3.3	Bhutan	45		
		2.3.4	India	46		
		2.3.5	Nepal	48		
		2.3.6	Pakistan	49		
		2.3.7	Sri Lanka	51		
	2.4		apply Chain Management	51		
		2.4.1		51		
			2.4.1.1 Planning and Sourcing	52		
			2.4.1.2 Logistics and Inventory Management	53		
		242	2.4.1.3 Quality Management	54 55		
	2.5	2.4.2 End Us	Status of Coal Supply Chain Management in SAARC Region ser Technologies	55 57		
	2.5		Power Generation	57		
			Cement Production	67		
			Brick Kilns	68		
			Steel Production	69		
		2.5.5		70		
3	Env		ntal Impacts of Coal and Carbon Footprint of SAARC Region	72		
	3.1		of Coal Utilization	73		
		3.1.1	Air-borne Emissions	73		
		3.1.2	Solid Waste Generation	77		
		3.1.3	Water Pollution	79		
	3.2	21 st Ce	ntury Clean Coal Technologies	82		
		3.2.1	SO _x Control	84		
		3.2.2	NO _x Control	86		
		3.2.3	Carbon Capture and Storage	89		

		3.2.4	Co-Combustion	92
	3.3	$CO_2 Em$	hissions Profile in SAARC Region	94
	3.4	Carbon	Trading	98
4	Coal	Policie	s, Regulations and Institutional Setups of SAARC Member States	100
	4.1	Role of	Coal in Future Energy Plans and Policies of SAARC Member States	101
		4.1.1	Afghanistan	101
		4.1.2	Bangladesh	101
		4.1.3	Bhutan	102
		4.1.4	India	103
		4.1.5	Maldives	105
		4.1.6	Nepal	105
		4.1.7	Pakistan	106
		4.1.8	Sri Lanka	107
	4.2		Public-Private Partnership in the Development of Coal Sector in SAARC	108
			er States	
	4.4		al Institutional Setup	110
_		4.4.1	Coal related Key Ministries/Departments	110
5			ource Issues	114
	5.1		& Safety Issues	115
		5.1.1	Coal Mining	115
		5.1.2	Coal Utilization	118
	5.2		ion & Training	122
6			I the Globe	126
	6.1		United States	127
	6.2		Australia	128
_		Coal in		129
7	-	Analysi		133
	7.1		y-Wise Projected Share of Coal in 2035	135
		7.1.1	Afghanistan	135
		7.1.2	Bangladesh	136
		7.1.3	Bhutan	137
		7.1.4	India	137
		7.1.5	Maldives	138
		7.1.6	Nepal	139
		7.1.7	Pakistan	140
	7 0	7.1.8	Sri Lanka	141
	7.2		tion Technologies	141
	7.3		er Technologies	142
	7.4		s & Regulatory Instruments	143
0	7.5		Resource Development	145
8	•		al Policy Framework	147
	8.1	-	al Coal Trade Potential	148
	8.2		ty Building Measures	152
	8.3 Regional Carbon Footprints of Coal Utilization Recommendations & Conclusions		152	
				154
A -		iograph	ıy	161
	nexu		Detail Durfile of Indian Cool Or - lite	175
	nexu		Detail Profile of Indian Coal Quality	175
Annexure II l		re II	Provincial Distribution of Coal in Pakistan	182

Annexure III	Structural Organization of Ministry of Coal and Responsibilities of Coal	
	India Limited (CIL)	

- Annexure IV Detailed Contact Information of All Relevant Key Ministries and 186 Departments
- Annexure V Pedagogy Comparison between Chemical Engineering Graduates from a 189 Model and SAARC Country Institute

List of Figures

1.1	Coal Production in Afghanistan (Million Tonnes)	3
1.2	Coal Consumption in Afghanistan (Million Tonnes)	3
1.3	Coal Production in Bangladesh (Million Tonnes)	4
1.4	Coal Consumption in Bangladesh (Million Tonnes)	4
1.5	Coal Production in Bhutan (Million Tonnes)	5
1.6	Coal Consumption in Bhutan (Thousand Tonnes)	6
1.7	Resource Estimation of Coal in India (Million Tonnes)	6
1.8	Quality Wise Reserves Estimation of Indian Coals (Million Tonnes)	8
1.9	State Wise Distribution of Indian Coal Reserves (Million Tonnes)	8
1.10	State Wise Distribution of Indian Lignite Reserves (Million Tonnes)	9
	Logarithmic Scale	
1.11	Coal and Lignite Production from Year 2004-05 to Year 2013-14 (Million	10
	Tonnes)	
1.12	Sectoral Share of Coal in Indian Industries (2013-14, %)	11
1.13	Industry Wise Consumption of Raw Coal in India (Million Tonnes)	11
	* Others include Sponge Iron, Colliery Consumption, Jute, Bricks, and Coal for Soft	
	Coke, Fertilizers and other Industries Consumption	
1.14	Total Production Growth (%) from 2003-04 to 2013-14	12
1.15	Raw Coal Production Growth (%) from 2003-04 to 2013-14	12
1.16	Trends in Lignite, Coking and Non-Coking Coal Production from 2003-04 to	13
	2013-14 (Million Tonnes)	
1.17	Country Wise and Quality Wise Coal Import by India during 2013-14 (Million	14
	Tonnes)	
1.18	Import of Coal, Coke and Lignite by India during 2013-14 (Million Tonnes)	14
1.19	Coal Export (2.188 Million Tonnes) from India to Different Countries during	14
	2013-14 (%)	
1.20	Coal Production in Nepal (Million Tonnes)	15
1.21	Coal Consumption in Nepal (Thousand Tonnes)	16
1.22	Provincial Distribution of Coal Reserves in Pakistan (Logarithmic Scale, Million	17
	Tonnes)	
1.23	Resource Estimation of Pakistani Coals (%)	17
1.24	Coal Production (Province Wise) in Pakistan for the Year 2013-14 (Million	18
	Tonnes)	
1.25	Coal Consumption by Sector in Pakistan during 2013-14 (%)	19
1.26	Coal Imports by Sri Lanka from Year 2010 to 2014 (Thousand Tonnes)	20
1.27	Coal Consumption in Sri Lanka (Thousand Tonnes)	21
2.1	Schematics of Coal Mining	23
2.2	Surface Mining	24
2.3	Underground Mining	25
2.4	Technological Advancements in Mining	25
2.5	Overview of Coal Processing	26
2.6	Overview of Techniques with respect to Particle Size for Coal a) Sizing, b)	27
	Cleaning c) Dewatering	
2.7	Vibrating Screens	29
2.8	High Frequency Screens	30
2.9	Sieve Bends	31
2.10	Classifying Cyclones	32
2.11	Dense Medium Vessels	33

2.12	Dense Medium Cyclones	34
2.13	Spirals	35
2.14	Conventional Froth Flotation Unit	36
2.15	Vibratory Centrifugal Dryer	37
2.16	Screen Bowl Centrifuge	38
2.17	Disc Vacuum Filter (On Left Side) and Thermal Dryer (On Right Side)	39
2.18	Conventional Thickener (On Left Side) and Active Slurry Impoundment (On	40
	Right Side)	
2.19	State-Wise Share of Open Cast and Underground Mining in India (Quantity in Million Tonnes)	46
2.20	Share of Open Cast and Underground Mining in India from 2003-04 to 2013-14 (Quantity in Million Tonnes)	47
2.21	Trend of Cost against Power Plant Location with respect to Coal Transportation	53
2.22	Schematic Producer-Buyer Coal Export Cycle	55
2.23	Contribution of Coal Transportation of Modes for 2013-14 (Quantity in Million	56
	Tonnes)	
2.24	Mode wise Internal Dispatches of Coal for year 2013-14 (Quantity in Million Tonnes)	56
2.25	Schematic Diagram of Electricity Generation from Coal	58
2.26	Schematic Diagram Chain Grate Boiler	59
2.27	Schematic Diagram of Pulverized Coal Combustion System	60
2.28	Schematic Diagram of Bubbling Fluidized Bed Combustion	63
2.29	Schematic Diagram of Circulating Fluidized Bed Combustion	64
2.30	Schematic Diagram of Pressurized Fluidized Bed Combustion	64
2.31	Integrated Gasification Combined Cycle	65
2.32	State-Wise Existing Supercritical Coal based Power Generation Capacity in India (MW)	66
2.33	Sectoral Consumption of Coal in India for Year 2013-14	66
2.34	Sectoral Consumption of Coal in Pakistan for year 2013-14 (Total Consumption	67
	= 6.55 Million Tonnes)	
2.35	Sectoral Consumption of Coal for Steel Industry in India for year 2013-14 (Figs. in Million Tonnes)	70
3.1	Typical Wet FGD System	85
3.2	Selective Catalytic Reduction	87
3.3	Selective Non-Catalytic Reduction	88
3.4	Amine Solution based CO_2 Separation and Regeneration	90
3.5	Chemical Looping Technology	91
3.6	CO_2 as Chemical Feedstock	92
3.7	CO ₂ Emissions in SAARC Region for 2012 (Million Tonnes)	94
3.8	Trends of CO_2 Emissions in Afghanistan for 2008-2012 (Million Tonnes)	95
3.9	Trends of CO_2 Emissions in Bangladesh for 2008-2012 (Million Tonnes)	95
3.10	Trends of CO_2 Emissions in Bhutan for 2008-2012 (Million Tonnes)	95
3.11	Trends of CO_2 Emissions in India for 2008-2012 (Million Tonnes)	96
3.12	Trends of CO ₂ Emissions in Nepal for 2008-2012 (Million Tonnes)	96
3.13	Trends of CO_2 Emissions in Pakistan for 2008-2012 (Million Tonnes)	96
3.14	Trends of CO_2 Emissions in Sri Lanka for 2008-2012 (Million Tonnes)	97
4.1	Probable Power Generation of Bangladesh Primary Fuel Sources by 2030	102
4.2	Projected Coal Production in India	103
4.3	Projected Energy Plan of Pakistan (2022)	106

4.4	Total Installed Power Generation Capacity of India, Share of State & Central	109
	Governments and Private Sector in Coal based Power Generation	
5.1	Workers Demand in Coal and Lignite Mining by 2025-India	122
5.2	List of existing vocational courses for coal mining industry	123
	(Ministry of Labour, Government of India)	
5.3	Proposed Model for Integrated Literacy Vocational Programs	124
5.3	Decrease in number of workers in Coal India Limited	125
6.1	Status of Coal in US	130
6.2	Status of Coal in Australia	131
6.3	Status of Coal in China	132
7.1	Coal Reserves, Production and Consumption Status in SAARC Region	134
7.2	Projected Coal Share in Primary Energy Demand of Afghanistan (Mtoe)	135
7.3	Projected Coal Share in Primary Energy Demand of Bangladesh (Mtoe)	136
7.4	Projected Coal Share in Primary Energy Demand of Bhutan (Mtoe)	137
7.5	Projected Coal Share in Primary Energy Demand of India (Mtoe)	138
7.6	Projected Coal Share in Primary Energy Demand of Maldives (Mtoe)	139
7.7	Projected Coal Share in Primary Energy Demand of Nepal (Mtoe)	139
7.8	Projected Coal Share in Primary Energy Demand of Pakistan (Mtoe)	140
7.9	Projected Coal Share in Primary Energy Demand of Sri Lanka (Mtoe)	141
8.1	Regional Coal Trade Potential	151
8.2	Regional Carbon Footprint and Trends for CO ₂ Emissions (From 2008 – 2012)	152

List of Tables

1.1	Coal bearing Deposits in Afghanistan	2
1.2	Coal Production in India for Year 2013-14 (Million Tonnes)	10
1.3	Ongoing/Proposed Projects for Thar Coal Development (Thar Coal Energy	18
	Board, Government of Sindh)	
1.4	Upcoming Coal Fired Projects under CPEC Programme	20
2.1	Comparison of Open Pit Mining and Underground Mining Approaches in	45
	Bangladesh	
2.2	Losses Involved in Coal Supply Chain Management Framework	52
2.3	Features for Current Available Technologies for Coal based Power Generation	61
3.1	Main Sources for Effluent Generation in PC Power Generation	80
4.1	Relevant Key Ministries/Organizations Operative in SAARC Member Countries	111
5.1	Health and Safety Hazards to Brick Kiln Workers	120
5.2	Type of Accidents on Five Brick Kilns	121
7.1	Comparison between Conventional BTK and VSBK	143
7.2	Current Energy Policies in SAARC Region	144
8.1	All Coal Flows in SAARC Region (Million Tonnes)	149

Abbreviations

%	Percentage
°C	Centigrade
Afs	Afghani
AICTE	All India Council for Technical Education
atm	Atmospheric
BP	British Petroleum
BTK	Bull's Trench Kiln
CaCO ₃	Calcium Carbonate
CaO	Calcium Oxide
CaSO ₄	Calcium Sulphate
CCS	-
CCT	Carbon Capture & Storage
CFBC	Clean Coal Technologies
	Circulating Fluidized Bed Combustion Combined Heat and Power
CHP CIL	Coal India Limited
CO(NUL)	Carbon Monoxide
CO(NH2)2 CO2	Urea Carbon Diswida
	Carbon Dioxide
COD	Chemical Oxygen Demand
COS	Carbonyl Sulphide
CPEC	China-Pakistan Economic Corridor
Dept.	Department
DMC	Dense Medium Cyclone
DMV	Dense Medium Vessel
EIA	Energy Information Administration
EP/ESP	Electrostatic Precipitator
ESIR	Environmental and Social Impact Report
EU	European Union
FBC	Fluidized Bed Combustion
FeS ₂	Pyrite
FeSO ₄	Ferrous Sulphate
FGD	Flue Gas Desulphurization
FIFO	First in, First Out
FYP	Five Year Plan
g	Gram
GCV	Gross Calorific Value
GDP	Gross Domestic Product
GSB	Geological Survey of Bangladesh
GSP	Geological Survey of Pakistan
Gt	Gigatonnes
GW	Gigawatt
GWe	Gigawatt Electrical
GWh	Gigawatt-hour
H ₂ O	Water

H ₂ S	Hydrogen Sulphide
Hele	High Efficiency-Low Emission
HgS	Mercuric Sulphide
HHV	High Heating Value
HUBCO	Hub Power Company Limited
IEA	International Energy Agency
IGCC	Integrated Gasification Combined Cycle
IISCO	Indian Iron and Steel Company
IPP	Independent Power Producer
JORC	Joint Ore Reserves Committee
KBC	Khoshak Brothers Company
Kg	Kilogram
KPK	Khyber Pakhtunkhwa
KW	Kilo Watt
KWh	Kilo Watt-Hour
LHV	Low Heating Value
LNB	Low NO _x Burners
LNG	Liquefied Natural Gas
M/P&E	Ministry of Power and Energy
MCO ₃	Metal Carbonate
MEA	Monethanolamine
mg	Milligram
MJ	Mega Joule
mm	Millimeter
МО	Metal Oxide
MoMP	Ministry of the Mines & Petroleum
MPa	Mega Pascal
MSD	Musculoskeletal
Mt	Million Tonnes
Mtoe	Million Tons of Oil Equivalent
MW	Mega Watt
N ₂	Nitrogen
N ₂ O	Dinitrogen Oxide
Na ₂ SO ₄	Sodium Sulphate
NCE	North Coal Enterprise
NH3	Ammonia
Nm ³	Normal Meter cubed per Hour
NO	Nitrogen Oxide
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
NTEVTA	National Technical Education & Vocational Training Authority
02	Oxygen
PAC	Powdered Activated Carbon
PC/PCC	Pulverized Coal Combustion
PCC	Pulverized Coal Combustion
PFBC	Pressurized Fluidized Bed Combustion

рН	Potential of Hydrogen
PLC	Public Limited Company
PLC	Programmable Logic Controller
PM	Particulate Matter
R & D	Research & Development
R/P	Reserve/Production
RES	Renewable Energy Sources
RINL	Rashtriya Ispat Nigam Limited
ROM	Run of Mine
SAARC	South Asian Association for Regional Cooperation
SCC	SAARC Coal Centre
SCCL	Singareni Collieries Company Limited
SCR	Selective Catalytic Reduction
SDA	Semi-Dry Absorption
SG	Specific Gravity
SNCR	Selective Non-Catalytic Reduction
SO ₂	Sulphur Dioxide
SO ₃	Sulphur Trioxide
SO _x	Sulphur Oxides
SSRL	Sino-Sindh Resource Private Limited
Syngas	Synthesis Gas
TEVTA	Technical Education & Vocational Training Authority
TISCO	Tata Iron and Steel Company
TWh	Terawatt-Hour
UNEP	United Nations Environment Programme
UNFCCC	United Nations Framework Convention on Climate Change
USA	United States of America
USD	US Dollar
USGS	United States Geological Survey
VSBK	Vertical Shaft Brick Kiln
VSP	Vizag Steel Plant
W/A	Weighing/Analysis
μm	Micromilimer